首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
For several years it has been apparent that the mechanical characteristics of insulating materials have a pronounced influence on their electrical breakdown by treeing. As a consequence of this discovery, it is possible to look again from a different perspective at the treeing behavior in materials containing fillers and barriers. The effect of temperature on treeing can be interpreted in terms of the effect of temperature on the various mechanical properties of the material, and of any particulate or solid barrier inclusions. The internal mechanical stresses produced in resin samples containing cast-in metallic electrodes can affect treeing behavior both positively and negatively, depending on whether this stress in the material is tensile or compressive. In the light of this experience it has been found possible to enhance the treeing resistance of electrical insulation by using these mechanical effects in the most advantageous way, viz. by mechanically prestressing the material by the inclusion of fibers in tension; a method which is akin to that employed in the prestressing of concrete  相似文献   

2.
Low-density polyethylene (LDPE) is used widely as an electric insulating material in electric power cables. The generation of electrical treeing due to aging of LDPE may lose the reliability of its insulating capability. Therefore it is important to suppress its treeing and to improve its electrical properties so that the reliability of cables can be improved. For this purpose, the authors prepared LDPE to which various inorganic materials were added. This investigation focuses particularly on lithium carbonate and quartz which were effective in suppressing the treeing when added to LDPE. Lithium carbonate-added (0.25 phr) LDPE in two hours of discharge showed the tree length 150 μm shorter than that (560 μm) of nonadded LDPE, exhibiting an obvious suppressing effect on treeing generation. It was found that this effect was more significant than quartz-added LDPE and even at elevated temperatures lithium carbonate-added LDPE exhibited suppression of treeing. The thermal decomposition temperature at which lithium carbonate-added (1 phr) LDPE loses 50 percent of its weight rose 100°C more than nonadded LDPE and 60°C more than that of quartz-added LDPE, which showed improvement in heat resistance of LDPE.  相似文献   

3.
This review summarizes research on treeing phenomena, i.e. the formation of electrical trees and water trees, that has been undertaken in Japan for the development of 500 kV XLPE cable. Section 1 presents the results of factors affecting XLPE cable insulation breakdown under commercial ac and lightning impulse voltages. Section 2 verifies the phenomena of electrical tree formation in XLPE cable insulation using block samples and model cables, and gives the results of studies to determine the level electrical field stress initiation for such trees. Section 3 summarizes the results of studies on long-term aging characteristics, which is a particular problem under commercial ac voltages, while Section 4 explains how this research influenced the design of 500 kV XLPE cable insulation. All authors were members of `The investigation committee of fundamental process of treeing degradation' under IEEJ  相似文献   

4.
The authors have been developing extruded polymer insulated superconducting power cables. Dielectric loss in electrical insulation cannot be ignored in superconducting cables since conductor loss in the cables is minimal. Studies so far show that ethylene-propylene rubber (EPR) is suitable as an electrical insulating material in the extruded polymer insulated superconducting cable design because it demonstrates excellent mechanical and relatively good electrical qualities at a cryogenic temperature. Widely used EPR includes some kinds of additives; however, their effect on tan δ of EPR at cryogenic temperature remains unknown. The effect of additives such as crosslinking agent and fillers on tan δ of EPR was examined at temperatures of between 4.2 K and 300 K. Thickness dependence of tan δ was also measured using EPR films of different thickness and an extruded EPR insulated cable sample. The results show that additives increase tan δ of relatively thin films of EPR even in the cryogenic temperature region; however, they do not have an intolerable dielectric loss in comparison with conductor loss and heat inflow of the superconducting cable. The remedy to tan δ increase due to the polymer contraction relative to shielding wires has been established.  相似文献   

5.
为了研究交联聚乙烯电缆绝缘电劣化引发电树枝后对材料聚集态的影响,通过差示扫描量热法技术对劣化前试样、松枝状电树枝、稠密枝状电树枝、稀疏丛状电树枝及丛林状电树枝试样的电树区域与非电树区域进行了研究.结果表明,经过电劣化后材料的熔融峰温均低于劣化前试样;各种类型电树枝电树区域的熔融热焓均高于非电树区域,而各类电树枝电树区域...  相似文献   

6.
研究交联聚乙烯(XLPE)电力电缆绝缘中电树枝产生后对材料形态的改变具有重要的意义。通过对国内外关于XLPE中电树枝的研究方法的深入分析,并结合实验室得到的电树枝试样具体情况,指出了目前电树枝通道分析方法所存在的问题,提出了进一步分析的方法和研究的目标。  相似文献   

7.
交联聚乙烯电力电缆的电树枝化试验及其局部放电特征   总被引:1,自引:0,他引:1  
电树枝化是影响交联聚乙烯(cross—linked polyethylene,XLPE)绝缘电力电缆长期安全运行的瓶颈,需要深入研究XLPE电缆绝缘的老化机制,尤其是电树枝化的规律,为XLPE电缆的设计制造和现场的运行管理,特别是在线诊断提供理论支撑。设计了交联聚乙烯电缆样品和相应的试验电极装置,并搭建基于实际XLPE电缆的电树枝化试验平台进行试验。结果表明该试验系统能满足XLPE电缆电树枝化试验研究的要求。以15kV的XLPE电缆作为试验样品,开展常温下工频12~21kV和50~90℃下的电树枝化试验,分析了电压和温度对电树枝形态的影响,得到电树枝局部放电的统计图谱,并将电树枝的生长发展分成4个阶段,分析了电树枝在不同生长阶段局部放电的最大放电量相位和平均放电量相位的分布,提取了其偏斜度等统计特征量,结果表明电压和温度对实际XLPE电缆中电树枝形态的影响与针一板电极得到的结果趋势相同,但是电树枝生长过程存在着一定的差异,同时最大放电量相位分布和平均放电量相位分布的3阶矩随着电树枝的生长发展而减小,可作为诊断电树枝生长发展阶段的参考量。  相似文献   

8.
高频下电树老化引起的高密度聚乙烯击穿现象   总被引:1,自引:1,他引:1  
为了分析高频下电树老化引起的高密度聚乙烯击穿现象,实验研究了冰水淬火高密度聚乙烯(HDPE)薄膜在频率50 Hz~90 kHz范围内的交流电压作用下电树老化引起的破坏现象及电树生长过程中的电树形态特性的变化。观测高频下树老化引起击穿过程中电弧运动发现:不同频率下HDPE薄膜中电树生长过程中存在树枝、树干、丛状和击穿型4种基本电树形态;在高频下不同电树形态存在形态转换的关系,且随着频率和电压的升高,相同条件下电树老化引起的击穿破坏概率大大增加。试验结果表明,在较高频率下树的形态易向击穿型发展。最后从高频电压对材料极化过程的影响及高频所引起的材料疲劳效应、热效应加剧角度出发,对在高频下电树老化易于引发击穿的特性展开了深入的讨论,解释了高频或中频电气设备易发生绝缘老化破坏的现象。  相似文献   

9.
This is a review to show the importance of electrical insulation in ac superconducting cables. An attractive superconducting cable has to be designed for the voltage range of 60-270 kV. Therefore, a reliable insulation design is imperative. Two types of insulation have been compared. One is composite insulation, namely laminar paper or plastic tape, impregnated with coolant. The other is solid insulation of extruded polymer on the conductor. The composite insulation has a lengthy history and, in the constructions to date, has been the insulation design used for superconducting cables. Some prototype superconducting cables with this type of insulation have been developed and successfully tested. However, the partial discharge in butt gaps may affect their long-term reliability. The solid insulation, on the other hand, can separate the coolant from the electrical insulation and can exploit the benefit of the super electrical insulation characteristics of polymers in the cryogenic region. Some attempts have been made to use this design with liquid nitrogen and liquid helium. One example incorporating extruded ethylenepropylene rubber (EPR) for insulation was found to satisfactorily go through the cool-down to a liquid helium temperature and to endure the simultaneous voltage and current tests. EPR, and possibly some other polymers, seem to be promising materials for solid insulation in the cryogenic region  相似文献   

10.
设计了高温下交联聚乙烯(XLPE)电缆绝缘中电树枝化的实验系统,在外施工频电压有效值为13 kV下,对不同温度下高压XLPE电缆绝缘中电树枝生长及其局部放电特性进行研究,结果表明,温度对电树枝的生长具有重要影响,整个系统可以用于高温下电树枝生长过程的实时观测与局部放电连续测量,为研究高温下XLPE电缆绝缘中电树枝引发与生长机理及其局部放电特性分析提供了实验研究平台。  相似文献   

11.
Electrical treeing in high voltage cable insulation has been studied widely as it is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stresses. The most frequently experimental set-up used to study electrical treeing is utilizing needles to achieve a high divergent field to promote the initiation of electrical trees. In this paper a new type of electrode configuration is described, which will be beneficial when examining electrical treeing in terms of both the capability to follow the course of events in real time and the small amount of insulation material is needed. This new electrode configuration makes use of a thin tungsten wire as electrode to obtain the high divergent electrical stress needed to initiate electrical trees. Multiple electrical trees are at times formed at different points along the wire during the testing, this indicates that the field are homogenous along the wire. This allows for determining the tree initiation field and the rate of tree growth. It is also shown that this electrode configuration is able to distinguish the increased electrical tree inception obtained by the addition of voltage stabilizers.  相似文献   

12.
The technique of prestressing electrical insulation by the inclusion of fibers in tension during the curing process has been used to establish a region of balancing compressive stress adjacent to the fibers and through which growing electrical trees have to pass. It has been known for many years that compressive stress has a retarding effect on tree growth (and tensile stress has an accelerating effect). The compressive stress, therefore, set up due to prestressing decelerates tree growth and long treeing times have been observed. Room temperature cured epoxy resin readily demonstrates the prestressing phenomenon but, as a result of its relatively low glass transition temperature, it is unable to sustain the prestress at temperatures in excess of 40 /spl deg/C. Post curing at 100 /spl deg/C raises the glass transition temperature and although a greater initial fiber tension is required to produce the same degree of prestress, the prestress is subsequently sustainable at temperatures up to and beyond 80 /spl deg/C. This has been demonstrated by the determination of the remnant stress in the cast-in fibers using Raman spectroscopy and by the enhanced treeing times observed in high temperature cured samples.  相似文献   

13.
交联聚乙烯电缆热老化与电树枝化相关性研究   总被引:1,自引:0,他引:1  
热老化过程不但会影响交联聚乙烯(XLPE)电缆绝缘的物理化学性能,还对绝缘内电树的产生与生长有着一定的影响。研究了热老化后XLPE电缆绝缘中的电树行为.探讨XLPE电缆绝缘中电树枝过程与材料热老化的关系。采用带循环通风的热老化箱对XLPE电缆绝缘进行3个温度等级的热老化实验:采用针板结构电极进行电树枝实验,并利用数码显微镜观察电树枝的产生和发展情况;利用差示扫描量热法(DSC)、傅里叶红外光谱分析(FTIR)测试了不同温度热老化下XLPE电缆绝缘的物理化学性能;最后探讨了几种不同结构电树枝的生长机理.认为热老化并没有加速电树枝的生长.反而有一定的抑制作用.  相似文献   

14.
通过添加不同含量的乙烯 -丙烯酸共聚物 (EAA)改善了聚乙烯 (PE)的电气性能。用电声脉冲法测量了样品中的空间电荷分布。测出了在直流预压电压下的短路电树枝的起始电压。对交流电压下抑制水树枝的产生和成长也做了研究。试验发现 ,不同EAA含量的试样中空间电荷的累积、短路 50 %电树枝的起始电压以及水树枝的形成有一定关系。空间电荷的测量可作为衡量改善试样耐电树枝和水树枝能力的手段  相似文献   

15.
Aging of polymeric and composite materials is reviewed mainly from the standpoint of their interfacial performance. Insulating materials can be divided into simple polymers and composites. Polymers for power cables, transformers, insulators and rotating machines consist of thermoplastics such as PE, PET and PPS, elastomers such as silicone, EPR and EPDM, and thermosets such as epoxy. Composites for GIS, rotating machines and insulators comprise epoxy/glass, epoxy/silica/alumina, and epoxy/mica systems. Aging processes are complicated in general, and take place under simultaneous multiple stresses such as electrical, thermal, mechanical and environmental stresses. Some of the phenomena covered in this paper are associated with the degradation by tracking and erosion and the loss of hydrophobicity in case of surface properties, and with PD, electrical treeing, water treeing and combined phenomena. The quality of cable insulation such as XLPE has been improved extensively from the standpoint of design electric strength. Interfacial problems will emerge for modification of cable joints. It is expected that polymers for outdoor use and filled epoxy resin systems should be improved from their environmental stability and from their design stress enhancement, respectively.  相似文献   

16.
频率对高密度聚乙烯电树老化特性的影响   总被引:2,自引:2,他引:0  
为了解频率对高密度聚乙烯电树老化特性的影响,在50Hz~90kHz较宽频率范围的交流电压作用下,研究了冰水淬火高密度聚乙烯(HDPE)薄膜的电树老化特性。结果表明,频率对电树起始形态具有重要的影响,随着电压频率的升高,树枝型电树的起始几率逐渐降低,丛状型电树的起始几率逐渐升高,电树逐渐由树枝型起始为主向丛状型起始为主转变,树干型和直击型为高频下所特有的电树起始形态。随着电树的生长,电树形态存在转换的可能,低频下,起始占主导的树枝型电树向丛状和树干型转变;高频下,起始占主导的丛状型电树则极易转变为树干和击穿型,导致绝缘的破坏。电树的发展可分为起始、滞长、生长和击穿期4个阶段。频率的提高加快了电树的发展速度且减少了电树的发展阶段,使发生击穿的几率大为增加。  相似文献   

17.
Conducting polymer composites become increasingly important for technical applications. In this article, the resulting electrical properties of such materials are illustrated by a variety of experimental examples. It is shown that the combined mechanical, thermal and electrical interaction between the filler particles via their electrical contacts and the surrounding polymer host matrix are responsible for the properties of the composite material. A short review is given of the theoretical background for the understanding of the electrical transport in such materials. The arrangement of the filler particles and the resulting conductivity can be described either by percolation or by effective medium theories. It can also be related to different types of charge carrier transport processes depending on the internal composite structure. Special emphasis is given to the microstructure of the filler particles such as size, hardness, shape and their electrical and thermal conductivities. A detailed analysis of the physics of the contact spots and the temperature development during current flow at the contact is given. It is shown that the polymer matrix has a strong influence on the electrical conductivity due to its elastic properties and the response to external thermal and mechanical stimulation. Strong changes in the electrical conductivity of conducting polymer composites can be realized either by thermal stimuli, leading to a positive and negative temperature coefficient in resistivity, or by applying mechanical stress. By using nonlinear fillers an additional degree of functionality can be achieved with conducting polymers.  相似文献   

18.
In this paper, electrical and reliability properties of ultrathin silicon dioxide, grown by immersing silicon in nitric acid solution have been studied. It is observed that the temperature, oxidation time, and concentration of the nitric acid solution play important roles in determining the thickness as well as the quality of the oxide. Prolonged exposure to nitric acid degrades the quality of the oxide. However, it was found necessary to reduce the oxidation temperature and the concentration of nitric acid to grow oxide of thickness 2 nm. In these conditions, the leakage current and fixed oxide charge in the chemical oxide were found to be too high. However, when this chemical oxidation was followed by anodic oxidation using ac bias, the electrical and reliability characteristics of metal-oxide-semiconductor (MOS) devices showed tremendous improvement. A MOSFETs with gate oxide grown by this technique have demonstrated low subthreshold slope, high transconductance and channel mobility. It is thus proposed that chemical oxidation followed by ac anodization can be a viable alternative low-temperature technique to grow thin oxides for MOS application.  相似文献   

19.
本文参考IECTS61956标准"评定绝缘材料中水树枝化的试验方法"设计了一种杯状电极装置,对低密度聚乙烯(LDPE)片状聚合物绝缘材料进行了水树枝生长试验研究,重点研究了LDPE中水树枝的长度与老化时间的关系。实验结果表明,在水树枝产生的初始阶段,其生长速度较快,一段时间后增长速率逐渐减慢。水树枝的长度随老化时间呈幂指数规律增长,这一规律与国外的一些学者提出的水树枝的电致应力引发模型基本相符。  相似文献   

20.
Electrical properties of chemically modified polyethylenes   总被引:1,自引:0,他引:1  
This report describes electrical properties such as space charge distribution, water treeing characteristics and ac breakdown strength in PE (polyethylene) modified by grafting and blending techniques. A control PE shows heterocharge. In AA (acrylic acid)-grafted PE (LDPE-g-AA), the heterocharge observed in PE decreases at low AA contents and homocharge is observed at high AA contents. In NBA (n-butyl acrylate)-grafted PE (LDPE-g-NBA), on the other hand, this heterocharge gets larger at all graft ratios to 0.12%. However, these components decrease the water tree length measured under specific conditions and increase ac breakdown strength. Details of the results are described and their origins are discussed. The results obtained with the LDPE-g-NBA are compared with those of PE/ethylene NBA copolymer blends  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号