首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以硅烷偶联剂KH-550在不同条件下处理超高相对分子质量聚乙烯(UHMWPE)纤维,采用正交实验方法,以硅烷偶联剂KH-550的浓度(A)、处理温度(B)、处理时间(C)为因素,以UHMWPE纤维的断裂强力、界面剪切强度(τ)为实验指标,研究了硅烷偶联剂KH-550处理UHMWPE纤维的最佳工艺条件。结果表明:UHMWPE纤维断裂强力的影响因素主次顺序为A,B,C,τ的影响因素主次顺序为B,A,C;硅烷偶联剂KH-550处理UHMWPE纤维的最优工艺为硅烷偶联剂KH-550质量分数17.5%,处理温度55℃,处理时间7 h,在此条件下得到的UHMWPE纤维的断裂强力为41.15 cN,断裂强力损失率为2.44%,τ为1.359MPa,τ的增加率为35.22%。  相似文献   

2.
为使超强聚乙烯纤维更好地应用于复合材料中,采用硅烷偶联剂KH-550对超强聚乙烯纤维进行表面处理。通过单因素法分析硅烷偶联剂KH-550的处理浓度、处理时间、处理温度对超强聚乙烯纤维界面剪切强度和断裂强力的影响,得到硅烷偶联剂KH-550对超强聚乙烯纤维的较优改性工艺为:硅烷偶联剂KH-550质量分数为12.5%~17.5%,处理温度为45~55℃,处理时间为5~7 h。  相似文献   

3.
《合成纤维》2017,(1):30-33
采用KH550硅烷偶联剂处理芳纶,将处理温度、时间、硅烷偶联剂的质量分数作为3个因素进行分析,通过单因素分析法确定每个因素对处理前后芳纶与树脂的界面剪切强度的影响,结合扫描电镜观察处理前后纤维的表面结构变化,得到最佳处理的工艺为:处理时间9 h、温度45℃、硅烷偶联剂的质量分数为25%。  相似文献   

4.
采用硅烷偶联剂KH-550对芳纶进行表面处理,以此提高芳纶的摩擦性和表面浸润性。通过对改性前后芳纶的表面性能进行测试分析,得出经硅烷偶联剂KH-550处理后芳纶的润湿性增强,纤维表面粗糙度和比表面积增大,表面活性基团数目增多,纤维结晶度降低,热性能几乎不受影响,纤维与树脂的粘结性得到了提高。这些变化说明处理后纤维与树脂的界面结合性能增加,也可进一步提高复合材料的力学性能。  相似文献   

5.
选用硅烷偶联剂KH-550,KH-560和钛酸酯偶联剂NDZ-201作为表面改性剂,对超高相对分子质量聚乙烯(UHMWPE)冻胶纤维在萃取阶段进行表面处理,经干燥、超拉伸制得表面改性UHMWPE纤维。采用红外光谱仪、接触角测量仪测定了纤维的表面化学结构和表面润湿性能,采用单纤维树脂包埋-拔出法测定了纤维与树脂基体的界面剪切强度,比较了改性前后纤维的力学性能变化。结果表明:改性后纤维表面引入了极性基团,硅烷偶联剂KH-550对UHMWPE纤维的表面改性效果最好。采用质量分数为1%的硅烷偶联剂KH-550溶液处理后,纤维与环氧树脂间的界面剪切强度提高了87.8%,纤维的断裂强度和模量分别提高了6.9%和32.6%。  相似文献   

6.
研究了黄麻纤维增强聚丙烯体系中黄麻的表面处理以及基体中改性剂和无机填料对界面剪切强度的影响。实验表明,NaOH 和硅烷偶联剂(KH550)表面处理以及基体改性均能够增强界面黏结,当 NaOH 浓度为2%时界面剪切强度达到5.3 MPa,且处理时间对界面剪切强度影响不大;KH550浓度为0.5%时界面剪切强度达到5.5 MPa;当基体中马来酸酐接枝聚丙烯(PP-g-MAH)含量为2%时界面剪切强度达到5.7MPa;添加纳米碳酸钙和滑石粉后,界面剪切强度随之增大,但含量分别超过20%和10%后界面结合反而变差。  相似文献   

7.
采用不同浓度的碱与不同浓度的硅烷偶联剂对竹片进行表面改性,研究了表面改性对竹片抗拉强度及其复合材料制品界面层间剪切强度的影响。实验结果表明:适当浓度的碱处理改性方法对竹片拉伸强度和竹复合材料界面剪切强度的提高要明显优于KH550改性方法,双重改性对竹片的抗拉强度具有较好的改善效果;通过扫描电镜分析冲击断面破坏方式发现,竹片/环氧乙烯基酯树脂复合材料界面损伤模式主要表现为竹片中竹纤维抽拔断裂、基体断裂、纤维/基体界面脱粘以及剪切分层,界面性能有所改善。  相似文献   

8.
表面处理芳纶纤维在丁羟橡胶中的应用   总被引:2,自引:0,他引:2  
为改进芳纶纤维的表面光滑、化学惰性强、与橡胶黏结性能差等缺点,用硅烷偶联剂KH-550对其表面进行改性处理.用电子能谱仪(ESCA)和扫描电镜(SEM)对改性后的纤维和丁羟橡胶表面进行了测试,结果表明:C元素的含量明显下降,N和O元素的含量提高,纤维表面活性提高.制得芳纤/丁羟橡胶复合材料的拉伸强度由未处理的2.58 MPa提高到处理后的3.22 MPa.处理后,由SEM得到芳纶纤维丁羟橡胶复合材料表面的丁羟橡胶量增加.在KH-550的质量分数为5%、处理时间为5 h的条件下,芳纶纤维的处理效果最佳.  相似文献   

9.
KH-550改性纳米SiO2对环氧胶黏剂性能的影响   总被引:1,自引:0,他引:1  
制备了氨基硅烷偶联剂(KH-550)表面接枝改性纳米SiO2粒子,利用正交实验,讨论了改性剂用量、改性温度以及改性时间对活化指数的影响。并将KH-550硅烷偶联剂包覆纳米SiO2作为填料,以环氧树脂E-44为基体,制备环氧树脂胶黏剂,通过对胶黏剂进行剪切强度,扫描电镜和阻抗测试,研究了改性纳米SiO2对环氧胶黏剂粘结性能以及耐蚀性能的影响。结果表明:改性纳米SiO2填充的环氧胶黏剂的剪切强度得到提高,最大增幅达到2MPa,耐蚀性能也得到提高。  相似文献   

10.
制备了一系列建筑用硅酮密封胶,研究了硅烷偶联剂的种类(如KH-550、KH-560、A-151和A-171等)、掺量和复配比对密封胶的表干时间、固化时间、硬度、粘接强度、拉伸强度和断裂伸长率等影响。研究结果表明:KH-550可大幅增强密封胶的粘接强度和拉伸强度,A-171对断裂伸长率的提升效果相对最佳,KH-550与A-171复配可有效改善密封胶的拉伸性能;当m(KH-550)∶m(A-171)=20∶80~40∶60、w(复合硅烷偶联剂)=0.85%(相对于107胶质量而言)时,密封胶的综合性能相对最好。  相似文献   

11.
采用直接分散法和上浆剂法分别制备了环氧树脂/碳纤维复丝,通过红外光谱、分光光度法等分析方法对处理的石墨烯的表面官能团及表面形貌进行表征,借助扫描电子显微镜对碳纤维表面进行微观形貌观察,研究了石墨烯改性对环氧树脂/碳纤维复丝界面性能的影响。结果表明:石墨烯表面成功地接枝了硅烷偶联剂KH-560;接枝硅烷偶联剂KH-560的石墨烯的环氧树脂/碳纤维复丝的拉伸性能优于未经改性的石墨烯的复丝;上浆法制得的环氧树脂/碳纤维复丝的拉伸性能优于分散法制得的复丝的拉伸性能;上浆剂法制备的石墨烯改性的环氧树脂/碳纤维复丝的断裂强力比未经过改性的未上浆的复丝的提高了48.6%,拉伸强度提高了30.4%,断裂伸长率提高了90.9%。  相似文献   

12.
硅烷偶联剂对废EMC粉/PVC复合材料性能的影响   总被引:1,自引:0,他引:1  
采用硅烷偶联剂KH-550对废环氧模塑料粉(废EMC粉)进行表面改性并制备了相应的改性废EMC粉/PVC复合材料,分析了废EMC粉的组成和性质以及KH-550的偶联机理,研究了偶联剂用量对复合材料力学性能和加工性能的影响,并用扫描电镜(SEM)观察了复合材料断面形貌。结果表明,KH-550质量分数为1.2%时改性效果较佳,拉伸强度、冲击强度和弯曲强度分别比未改性时提高了58.2%、86.0%和43.7%,扫描电镜和流变性能测试结果均表明,硅烷偶联剂KH-550的加入大大改善了废EMC粉和PVC之间的相容性,提高了界面结合强度。  相似文献   

13.
采用3种不同性质的硅烷偶联剂KH-550、KH-560和KH-570分别对Fe3O4纳米粒子进行表面改性,并通过亲油化度及表面羟基数的实验,筛选出改性效果最好的偶联剂KH-570。实验得出的最佳改性工艺条件为:改性偶联剂浓度为10%,溶液pH值为6,水解时间为1h,改性温度为80℃。结合红外光谱(FT-IR)及扫描电子显微镜(SEM)仪器进行分析,结果表明,硅烷偶联剂KH-570可有效进行Fe3O4表面改性。  相似文献   

14.
纤维和树脂之间的界面结合强度是决定复合材料性能的关键因素。通过实验研究在玻璃纤维表面涂覆经硅烷偶联剂KH550表面处理的纳米SiO_2以及在PP基体中加入PP-g-MAH对玻璃纤维增强聚丙烯复合材料的界面结合强度和力学性能的影响。结果表明,纳米SiO_2经KH550表面处理后可以降低其表面能,有利于其在纤维表面分散吸附;纤维表面涂覆纳米SiO_2及在PP中加入PP-g-MAH,有利于增强纤维和树脂之间的界面结合强度,复合材料的层间剪切强度提升了116.06%,拉伸强度提升了109.14%,弯曲强度提升了99.85%。  相似文献   

15.
陶莹莹  赵科 《化工时刊》2012,26(4):11-15,22
利用自制的MAH—g—PP乳液和KH-550溶液组合进行玻纤的表面处理。考察了MAH—g—PP乳液和KH-550溶液处理对PP/GF界面粘结的影响,研究了MAH—g—PP乳液处理玻纤表面的适宜温度和时间,探讨了MAH—g—PP乳液对PP/GF的偶联机理。结果表面:玻纤表面经MAH—g—PP乳液和KH-550溶液处理后,在PP/GF界面上形成了牢固的化学键连接,出现了明显的横晶层;MAH—g—PP乳液处理玻纤表面的适宜温度和时间为105℃、1h;MAH—g—PP乳液对PP/GF的偶联机理为乳液中的羧基与玻纤表面KH-550的氨基发生化学键合。  相似文献   

16.
采用微波加热的方法,利用硅烷偶联剂KH-550开展对水处理应用中易于降解的丝瓜络进行表面改性的研究。拟通过减少纤维表面的羟基,以降低丝瓜络的亲水性,达到提高纤维耐微生物腐蚀性、延长使用寿命的目的。结果表明,碱预处理对丝瓜络的吸湿性能影响显著(P0.01),增加纤维表面的粗糙度,有利于后续的改性;通过NaOH和KH-550的质量分数分别为2%和5%,浸泡和微波反应时间分别为60 min和60 s条件下的改性,丝瓜络的吸水率比未改性时下降了22.43%;正交实验表明,微波处理时间和KH-550含量这2个因素对改性效果的影响显著(P0.01);对丝瓜络改性效果的影响大小顺序为:KH-550含量微波处理时间NaOH含量浸泡时间;优化条件为:NaOH和KH-550的质量分数分别为2%和1%,浸泡和微波反应时间分别为30 min和180 s。  相似文献   

17.
对芳纶1414进行低温等离子体表面改性以改善其构成复合材料时的界面黏结性能。设计正交试验,得到低温等离子体处理芳纶1414的最佳条件为放电功率100 W,处理时间300 s,放电压强20 Pa。采用电子单纤维强力机、纤维摩擦因数测定仪、纤维接触角测量仪、扫描电子显微镜和傅里叶变换红外光谱仪对改性前后的芳纶1414进行性能表征。结果表明:经过低温等离子体改性的芳纶1414的断裂强力较原样下降了6.3%,静摩擦因数上升了15.7%,表面接触角减小了36.8%,纤维表面出现微小均匀的凹槽,增大了比表面积,引入了自由基团,增大了表面反应活性,从而改善了与树脂基体复合时的黏结强度。  相似文献   

18.
以甲基三甲氧基硅烷/苯基三甲氧基硅烷为混合硅烷,在硅烷偶联剂(KH-560)作用下混合硅烷经水解缩合后,制得耐高温有机硅树脂。研究结果表明:该硅树脂在N2中失重10%时的温度为385℃,说明其耐热性较好;胶接件的剪切强度随甲基三甲氧基硅烷比例增加而增大;基材表面经KH-560处理后,相应硅树脂/基材胶接件的剪切强度随KH-560含量增加而增大,并且基材为钢片、铝片和玻璃钢片时的剪切强度分别为1.7、1.6、2.3 MPa。  相似文献   

19.
采用硅烷偶联剂KH-560和天然胶乳等对芳纶短纤维进行预处理,制备了KH-560/天然胶乳预处理芳纶短纤维增强天然橡胶复合材料,并研究了芳纶短纤维的预处理方法及长度对复合材料性能的影响。结果表明,在相同的混炼条件下,加入用多巴胺、硅烷偶联剂KH-560和天然胶乳共同处理的芳纶短纤维复合材料的力学性能较好,比加入不处理短纤维复合材料的拉伸强度提高23%;在加入量相同的条件下,与加入1mm和6mm芳纶短纤维的复合材料相比,加入3mm芳纶短纤维的橡胶复合材料的综合性能较佳;随着芳纶短纤维长度的增大,橡胶的导热系数呈下降趋势。  相似文献   

20.
为改善单组分室温硫化(RTV)硅酮密封胶强度较低的缺点,采用γ-氨丙基三乙氧基硅烷(KH-550)对硫酸钙晶须进行表面湿法改性。将改性CaSO4晶须加入RTV硅酮密封胶中,制备了高性能的RTV硅酮密封胶。阐述了KH-550改性CaSO4晶须的机理,考查了KH-550用量、改性温度以及改性时间对改性效果的影响。探讨了改性CaSO4晶须对RTV硅酮密封胶工艺性、硬度以及力学性能的影响。结果表明,当m(KH-550)=3%、改性温度90℃、改性时间30min时改性效果最佳。改性CaSO4晶须的活化指数可达到80%以上。CaSO4晶须的添加量越多,RTV硅酮密封胶的挤出性越差;当改性CaSO4晶须质量分数8%时,对密封胶硬度的改性效果最佳。当改性CaSO4晶须质量分数为4%~5%时,制备的胶粘剂拉伸强度、剪切强度和断裂伸长率最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号