首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了新型二维纳米材料石墨烯的全球研究动态。将石墨烯技术研究按制备和应用两个角度定义了复合材料、传感器、锂离子电池、化学气相沉积制备等12个领域,通过对德温特专利数据库收录的1967~2013年石墨烯技术专利的分析,揭示了专利排名前十名国家(地区)在这些领域开展石墨烯技术创新的动态,以及石墨烯技术研究在各个领域中的发展趋势。研究表明:中、美、韩、日在石墨烯技术研究上表现比较强劲,美、韩的研发重点在大企业,而中国的研发重点在大学;中国的专利主要集中在国内,全球布局能力明显不如美韩;总体来看,整个产业链仍未形成,不具备实现大面积、高质量的工业化生产的成熟技术,石墨烯的可控制备、石墨烯的结构和性质调控以及石墨烯材料的应用等仍然是未来的研究热点。  相似文献   

2.
超级电容器兼具普通电容器和化学电池的优点,具有功率密度高、可快速充放电、循环寿命长等显著优势。电极材料是发展具有优异性能超级电容器的关键材料。石墨烯凭借其优异的力学、电学、热学等性能成为超级电容器理想的电极材料。本文首先基于对石墨烯基超级电容器相关学术论文、专利的统计分析,讨论了石墨烯基超级电容器的发展现状与方向;其次,简要阐述了石墨烯基超级电容器在国内的产业发展现状,讨论了石墨烯基超级电容器未来发展所面临的难点与挑战,并在此基础上提出了未来发展的方向与建议。  相似文献   

3.
石墨烯因其优异的物理、化学性能,自发现以来一直是研究的热点。介绍了石墨烯作为超级电容器电极材料的优势,简单阐述了超级电容器的分类和机理,重点分析了特殊结构石墨烯单质材料、石墨烯复合材料作为超级电容器电极材料的研究进展。  相似文献   

4.
超级电容器是一种高性能的能量存储设备,因具有高功率密度、快速的充放电速率、高安全性能、优异的循环稳定性和较宽的工作温度范围等优点备受人们关注和青睐,并在清洁能源、电动汽车、无线通信、航空航天、军事和消费电子等领域得到了广泛的应用。电极材料是决定超级电容器储能性能的关键因素之一,开发新型、高效电极材料的已成为国内外研究的热点。传统电极材料经过长期的发展虽取得了一些技术革新和突破,但仍存在碳基电极容量不大、过渡金属化合物导电性不高、导电聚合物循环稳定性不足等缺点。石墨烯是一种由单层碳原子构成的碳纳米材料,具有优异的物理化学性能,是超级电容器电极材料的新宠。三维石墨烯不仅能保留单层或少数层石墨烯独特的物理化学性质,而且具有低密度、多孔性、高度连通结构和微反应环境等特性,在超级电容器领域备受关注,比石墨烯具有更加广泛的应用前景。目前,三维石墨烯的制备方法主要有湿化学技术、CVD技术和3D打印技术等。其中,3D打印技术凭借其在空间构型设计和化学组成优化方面的独特优势,在生物医药和能源器件等领域迅速发展。基于3D打印的石墨烯基材料不仅具有良好的孔道分布和优异的力学性能,而且其独特的3D打印结构还能...  相似文献   

5.
石墨烯基复合超级电容器材料研究进展   总被引:1,自引:0,他引:1  
石墨烯基复合材料因其优异的性能广泛应用于各个领域,尤其在超级电容器的研究中。本文对石墨烯基复合超级电容器材料的结构进行了分类,并分别从石墨烯-碳基复合材料、石墨烯-导电高分子复合材料、石墨烯-过渡金属化合物复合材料的角度,总结了不同石墨烯基复合超级电容器材料的研究进展,重点强调了优化电极结构和提高电极性能之间的关系。同时,概述了石墨烯基复合材料在锂离子电池、太阳能电池、催化等其他方面的应用。获得高能量密度、功率密度以及长循环寿命的超级电容器是其作为电极材料的发展趋势。  相似文献   

6.
近年来,超级电容器以其优异的性能引起了研究者的广泛兴趣。其中以石墨烯为基质的电极材料占研究的绝大部分,同时质子化的聚苯胺也是一种高比电容的电极材料,将石墨烯与聚苯胺复合,利用二者的协同作用可以有效提高电容器的性能。主要介绍了二者的复合方式及复合材料的电容性能,总结了石墨烯/聚苯胺电极材料电容器的研究进展,最后对该领域的发展进行了展望。  相似文献   

7.
李伟  陈峰 《高技术通讯》2016,(4):396-406
利用德温特创新索引(DII)数据库的专利文献数据,通过产业竞争环境分析和主要竞争对手分析,从竞争情报的视角研究了超级电容器产业的技术竞争态势。通过计算专利技术生命周期、技术研发重点、主要专利优先权国家分布、主要研发机构等指标,明确了我国在该技术领域的位置,提出了发展我国超级电容器产业对策和建议。  相似文献   

8.
超级电容器与锂电池相比具有更高的循环稳定性以及更高的能量密度。提高超级电容器电极材料化学稳定性,增大离子吸附比表面积,以获得更好的电化学性能,成为超级电容器研究领域的热点。以湿化学还原法制备的石墨烯为基底,采用原位电化学沉积法制成了石墨烯/聚吡咯导电复合材料超级电容器电极。通过扫描电子显微镜(SEM)对电极的微观形貌进行了观察,利用电化学工作站对组装的超级电容器电化学性能进行了系统表征,同时探讨了沉积浓度和沉积时间对电化学性能的影响。结果表明,在0.2 mol/L吡咯溶液中沉积时间为22.5 min制备出的石墨烯/聚吡咯导电复合材料电极的比电容可达388 F/g,表现出优良的超级电容器电化学性能。  相似文献   

9.
超级电容器与锂电池相比具有更高的循环稳定性以及更高的能量密度。提高超级电容器电极材料化学稳定性,增大离子吸附比表面积,以获得更好的电化学性能,成为超级电容器研究领域的热点。以湿化学还原法制备的石墨烯为基底,采用原位电化学沉积法制成了石墨烯/聚吡咯导电复合材料超级电容器电极。通过扫描电子显微镜(SEM)对电极的微观形貌进行了观察,利用电化学工作站对组装的超级电容器电化学性能进行了系统表征,同时探讨了沉积浓度和沉积时间对电化学性能的影响。结果表明,在0.2mol/L吡咯溶液中沉积时间为22.5min制备出的石墨烯/聚吡咯导电复合材料电极的比电容可达388F/g,表现出优良的超级电容器电化学性能。  相似文献   

10.
近年来,便携式和可穿戴电子设备呈现出跨越式发展,为了使可穿戴电子器件更加灵活、轻巧、智能并完全实现产品化,就需进一步探求与之匹配的具有薄、轻、柔特点的储能装置。超级电容器由于具有功率密度高、循环寿命长、机械强度高、安全性好和易于组装等优点,受到研究者的广泛关注。然而,传统的超级电容器一旦受到外力发生变形,储能特性会极大降低甚至丧失。电极材料是电容器的核心部分,因此研制出高柔韧性和储能特性出众的电极材料是有必要的。石墨烯因具有大比表面积,优异的力学、电学性能而成为用于柔性超级电容器的有吸引力的电极材料。赝电容材料可提供高比电容,但其导电性差、稳定性低,因此研究者将石墨烯与赝电容材料相融合作为电极材料,充分发挥各自优势,不仅克服了石墨烯片层间易团聚的缺点,还可提高柔性超级电容器的整体能量密度。由于二维石墨烯片层易堆叠,电子传导能力受到限制,目前更多的研究工作致力于三维多孔网状结构的石墨烯材料。本文突出介绍了石墨烯的两个重要角色:(1)与电化学活性物质复合作为活性材料;(2)作为沉积活性物质的导电柔性基体。因此,功能多样化的石墨烯在制备柔性电极中有很大的潜力。通过化学沉积、浸涂、水热等工艺将具有高电导率的石墨烯直接作为柔性基底,或与赝电容材料键合附着在柔性基体上,制备基于石墨烯的柔性电极材料。本文介绍了超级电容器的储能原理和石墨烯在柔性超级电容器领域的应用状况,着重总结了石墨烯/过渡金属氧化物、石墨烯/导电聚合物复合电极材料在柔性超级电容器方面的研究进展;解析了柔性超级电容器电极材料仍然面临的挑战,并对其未来的发展进行了展望。  相似文献   

11.
以海藻作为固相碳源,利用海藻对金属离子具有吸附性能的特点,在未进行生物质材料改性的条件下,实现海藻生物质材料对催化剂金属离子的均匀吸附.本文结合原位高温金属催化和化学活化的方法制备三维多孔石墨烯,并研究了其作为超级电容器电极材料的电化学性能.通过扫描电镜、透射电镜、X射线衍射、拉曼光谱、氮气吸附等手段对三维多孔石墨烯的形貌与结构进行表征分析.研究结果表明,制备的三维多孔石墨烯具有片层状三维网络结构,且片层较薄,并具有较高的石墨化程度,其比表面积达到1 700 m~2/g,孔径分布主要在2~10 nm.以该三维多孔石墨烯材料作为超级电容器电极材料,进行电化学性能表征,发现在较低的电压扫速下得到的比电容量为90 F/g,同时,该材料还具有较高的能量密度和功率密度.以海藻为固相碳源制备得到的三维多孔石墨烯材料在超级电容器领域具有一定的应用前景.  相似文献   

12.
超级电容器用石墨烯极片的制备和性能   总被引:1,自引:0,他引:1  
袁美蓉  赵方辉  刘伟强  朱永法  王臣 《功能材料》2013,(19):2810-2813,2818
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

13.
以石墨粉为原料,通过简便的氧化还原法制备了石墨烯。将石墨烯极片在有机电解液体系中组装成超级电容器。利用XRD、SEM对制备的石墨烯电极进行物相和形貌分析。采用恒电流充放电、循环伏安和交流阻抗对所制备超级电容器的电容性能进行了研究。结果表明,石墨烯电极超级电容器比天然石墨制备的超级电容器的比电容有了明显的提高;在电流密度为200mA/g,电压区间为1.25~2.5V下循环888次后比电容保持在45.5F/g,容量保持率在85.5%,表明石墨烯材料制备的电容器具有较好的充放电循环性能。  相似文献   

14.
三维石墨烯具有独特的三维多孔结构,不仅增加了与电解液的接触面积,同时为固定在其表面的活性物质提供了快速的电子传输通道,有效地提高了超级电容器的电化学性能,使其被认为是最有前景的超级电容器电极材料。综述了目前获得多孔结构、大比表面积、优异导电性和良好力学性能的三维石墨烯的方法,并简述了其复合材料在超级电容器领域的应用现状。  相似文献   

15.
三维石墨烯网络(3DGNs)能够缩短电解质离子的扩散距离,提供快速电子输运通道,并能充当骨架以与赝电容材料进行复合,因而在超级电容器中得到了广泛应用。本文主要综述近年来三维石墨烯网络及其复合材料在超级电容器电极材料方面的的进展,论述提升三维石墨烯基超级电容器性能的途径,最后展望了未来三维石墨烯网络的前景。  相似文献   

16.
滕柳梅 《材料导报》2016,30(Z1):197-200, 208
石墨烯因具有独特的二维晶体结构而具备优异的电学、光学、力学、热学等性能,成为全世界科研工作者研究的热点。介绍了超级电容器储能原理,对石墨烯在超级电容器中的应用和其复合电极材料的发展进行了综述和展望。  相似文献   

17.
石墨烯独特的结构使其具有优异的电、光、热、强度等物理性质,是"后硅时代"的新潜力材料,因具有巨大的应用前景而成为研究的热点。首先对近10多年来国内外石墨烯的研究现状进行了简要分析,然后详细介绍了石墨烯的主要制备方法、原理、各自的特征及其应用前景,重点综述了石墨烯在超级电容器电极材料中的应用研究,最后就目前石墨烯及其在超级电容器中的应用研究的关键问题提出了个人看法和一些建议。  相似文献   

18.
文章综述了氧化石墨烯的制备方法,化学还原氧化石墨烯的方法以及其在纳米材料领域中的应用,重点阐述了还原石墨烯所用的各种还原剂以及其在气体传感器、透明电极、超级电容器、有机太阳能电池等领域中的应用,展望了石墨烯材料未来的发展趋势。  相似文献   

19.
消息报道     
合肥研究院在超高储能密度超级电容器研制方面取得进展 近日,中国科学院合肥物质科学研究院固体物理研究所研究员王振洋团队实现了宏观厚度石墨烯晶体膜大面积制备,在超高储能密度超级电容器研制方面取得进展。研究人员采用激光诱导加工法,将聚酰亚胺前驱体直接原位转化为石墨烯晶体膜;针对其直接用作储能电极时所面临的体积效应技术瓶颈,通过优化前驱体的分子构型和热敏感性,大幅增加了激光与聚合物薄膜的作用深度,进而实现了多孔石墨烯晶体膜的宏观厚度制备;以此作为电极构筑的超级电容器,在储能密度和循环稳定性方面得到显著提升。  相似文献   

20.
超级电容器复合电极材料的研究进展   总被引:1,自引:0,他引:1  
超级电容器作为一种新型的储能元件,具有高功率密度和高循环寿命等优点,在许多领域特别是混合电动汽车领域具有广阔的应用前景.而电极材料是决定超级电容器性能的关键因素之一,高性能电极材料的合成和优化是目前超级电容器研究的重点.综述了超级电容器的储能原理、超级电容器复合电极材料的制备、性能、以及发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号