共查询到20条相似文献,搜索用时 62 毫秒
1.
针对太阳能电池片缺陷数据量匮乏造成的网络过拟合和模型性能不达标的问题,提出基于深度卷积对抗生成网络和图像随机拼接的真假数据融合算法,将训练数据量提升了800倍;同时对网络模型进行轻量化优化,减少模型训练参数。实验结果表明,经过真假数据融合扩充数据集后训练的模型测试精度相比原始训练集和传统数据增强算法分别提升了近30%和17%;轻量化处理后的模型参数减少为之前的1/2,对每张图片的测试时间由57 ms缩短到22 ms。研究证明,真假数据融合算法能够有效的缓解训练数据不足造成网络过拟合问题;轻量化优化模型在保证精度的同时,压缩模型大小,加快测试速度。 相似文献
2.
针对太阳能电池片缺陷数据量匮乏造成的网络过拟合和模型性能不达标的问题,提出基于深度卷积对抗生成网络和图像随机拼接的真假数据融合算法,将训练数据量提升了800倍;同时对网络模型进行轻量化优化,减少模型训练参数。实验结果表明,经过真假数据融合扩充数据集后训练的模型测试精度相比原始训练集和传统数据增强算法分别提升了近30%和17%;轻量化处理后的模型参数减少为之前的1/2,对每张图片的测试时间由57 ms缩短到22 ms。研究证明,真假数据融合算法能够有效的缓解训练数据不足造成网络过拟合问题;轻量化优化模型在保证精度的同时,压缩模型大小,加快测试速度。 相似文献
3.
针对YOLOv4主干网络庞大、参数量多,应用于绝缘子缺陷检测中无法满足实时性要求的问题,提出一种轻量化的YOLOv4检测模型。首先,引入含ECA集成组件的GhostNet作为特征提取网络,保证特征提取能力的同时大幅减少模型参数,加快模型推理速度。其次,使用K-means++聚类算法确定出初始锚框尺寸,以适应绝缘子缺陷大小,提升缺陷定位精度。最后,在交叉熵损失函数的基础上引入Quality Focal Loss改进损失函数,进一步提升模型检测性能。实验结果表明,改进后的轻量化YOLOv4与原始YOLOv4相比,模型大小压缩至原来的62.47%,每秒帧率提升了68.83%,绝缘子缺陷检测的准确率提升了1.07%,在显著提升检测速度的同时保证了算法检测精度,且在小目标和复杂背景下表现突出。 相似文献
4.
5.
无人机巡检已经成为当下输电线路巡检的主流方式,绝缘子缺陷的检测是无人机巡检中的重要环节。因此,提出了一种基于改进YOLOv5的轻量化绝缘子缺陷检测算法。首先,使用轻量型的Ghost卷积代替普通卷积;然后,使用重复加权BiFPN(双向特征金字塔网络)替换原特征提取网络,提高网络对不同尺度的特征提取能力;最后,引入CA(坐标注意力机制)提高了主干特征提取效率。实验结果表明,绝缘子检测的平均精度值提升了1.7个百分点,模型大小减少了13.1%,改进后的算法模型在提升检测精度的同时更加轻量化,可实现绝缘子缺陷的快速检测。 相似文献
6.
在基于机器视觉的锯链缺陷实时检测过程中,油污、粉尘等因素影响图像亮度和质量,导致目标检测网络的特征提取能力下降。为保证复杂环境下锯链缺陷检测的准确率,本文设计了一种结合弱光增强和YOLOv3算法的锯链自动化缺陷检测方法。首先使用RRDNet网络自适应增强锯链图像亮度,恢复图像暗区的细节特征;然后采用改进YOLOv3算法对锯链零件进行缺陷检测,增加FPN结构特征输出图层,利用K means聚类算法对先验框参数重新聚类,并引入GIoU损失函数来提高小目标的缺陷检测精度。最后搭建一套锯链缺陷在线检测系统,对所提方法进行验证。实验结果表明,该方法能够显著提高弱光环境下的锯链图像照度、恢复图像细节,改进YOLOv3算法的mAP值为92.88%,相比原始YOLOv3提高14%,最终系统整体的漏检率降低到3.2%,过检率也降低到9.1%。所提出的方法可实现弱光场景下锯链缺陷的在线检测,并且对多种缺陷有着较高的检测精度。 相似文献
7.
针对目前工业生产过程中存在砂纸表面缺陷人工质量检测精度低和检测效率低问题,提出一种基于YOLOv5网络模型融合CA注意力机制的砂纸表面缺陷自动检测方法。首先对砂纸生产过程中的砂纸表面图像进行采样,将收集到的砂纸表面缺陷图像分成脱砂、堆砂、划痕和褶皱4种缺陷类型来制作砂纸表面缺陷数据集;其次将YOLOv5主干网络中的C3模块与CA注意力机制结合,改进为CAC3模块;最后将改进前后的网络模型在自建砂纸表面缺陷数据集上进行训练和验证。实验结果表明:得到改进后的YOLOv5+CAC3网络模型,其P、R、mAP@0.5、mAP@0.5:0.95和S的数值分别为96.2%,92.9%,95.8%,65.0%,16.8 ms,相比于改进前的YOLOv5网络模型分别提高了1.1%、2.2%、0.6%、1.7%、4.5 ms。该方法在砂纸表面缺陷检测中精度高、速度快、检测稳定,符合砂纸生产过程中砂纸表面缺陷检测的要求。 相似文献
8.
9.
10.
针对目前钢板缺陷检测精度和速度的不足,提出了一种改进的YOLOv3检测算法.首先使用小波-中值滤波处理缺陷图像,清除图像里的噪声使图像更平滑.然后在原有网络中的密集连接网络(Darknet-53)上增加一个尺度输出增强算法对小目标缺陷的识别能力.最后为了增强算法模型的准确性对算法原有的损失函数进行优化,得到改进版的YO... 相似文献
11.
针对水下低质量成像、水下目标形态大小各异、以及水下目标重叠或遮挡导致水下目标检测精度低的问题,提出一种结合数据增强和改进YOLOv4(you look only once)的水下目标检测算法,在YOLOv4的主干特征提取网络CSPDarknet53中添加卷积块注意力机制(convolutional block attention module, CBAM),以提高网络模型特征提取能力;在路径聚合网络(path aggregation network, PANet)中添加同层跳接和跨层跳接结构,以增强网络模型多尺度特征融合能力;通过数据增强方法PredMix(prediction-mix)模拟水下生物重叠、遮挡等显示不完全的情形,以增强网络模型鲁棒性。实验结果表明,结合数据增强和改进YOLOv4的水下目标检测算法在URPC2018(underwater robot picking control 2018)数据集上的检测精度提升到了78.39%,比YOLOv4高出7.03%,充分证明所提算法的有效性。 相似文献
12.
针对分心驾驶检测方法存在实时性差、精度低、可部署性差的问题,提出了一种基于上下文语义增强联合 YOLOv7 的 分心驾驶检测算法。首先将模型 backbone 和 head 部分的 ELAN 模块替换成语义上下文增强模块(contextual transformer, CoT), 提高上下文语义信息的捕获能力。其次,将语义关联增强机制(triplet attention)融入卷积块中,插入 backbone 和 head 的连接头之间以及融合 MP2 模块,强化目标间的关联关系以及提升目标特征提取能力。最后,将自注意力双向 Transformer 模块(Biformer) 模块融合 SPPCSPC 模块,提升模型对分心驾驶中的复杂场景和遮挡目标的处理能力。改进的 YOLOv7 算法 在分心驾驶数据集下平均精度均值(mean average precision,mAP)达到了87.3%,比原算法提高了4.3%,模型参数量减少了
4.7%,每秒传输帧数达到了90 fps,具有较好的检测精度与速度。 相似文献
13.
为解决复杂背景下小目标车辆检测存在的误检、漏检等现象,创新性提出一种改进YOLOv7网络的目标检测算法。首先,为解决小目标车辆存在次要信息干扰问题,将高效通道注意力(ECA)机制融于YOLOv7模型的主干网络特征层,通过自适应学习来增强目标区域信息权重占比,抑制无关信息;其次,为解决神经网络检测模型训练的超参数随机经验设定性问题,将麻雀搜索算法(SSA)对检测模型训练超参数进行优化,通过内外双循环迭代方式,快速收敛出全局最优学习率,进而得到最优组的权重信息,最终提高小目标车辆检测精度。实验结果表明,基于结构优化、超参数优化的YOLOv7-ECA-SSA检测模型在BDD100K数据集上的检测精度为79.01%,比原始模型提高了5.38%,具备更好的小目标车辆检测性能。 相似文献
14.
针对传统输电线路无人机巡检图像检测方法存在的精度低、计算时间长和训练样本少等问题,提出了一种用于输电线路部件绝缘子缺陷识别的改进YOLOv3模型。引入K-means++算法解决小目标不敏感问题,引入Focalloss函数解决样本不均衡问题,引入Mish激活函数提高模型精度,引入注意力机制Senet提高特征提取性能。通过对改进前后模型性能的比较分析,验证了该方法的优越性。结果表明,与传统的检测方法相比,所提方法在检测速度上能够满足实时检测的需要,且检测精度最优,检测时间为0.079 s,检测平均准确度均值为94.40%。该研究能够满足输电线路无人机巡检图像缺陷自动检测的需要。 相似文献
15.
针对复杂环境中烟火检测困难,检测精度低的问题,提出一种改进YOLOv5s的烟火检测方法。首先,针对Neck层烟火特征融合不准确、效果差的问题,提出一种通道注意力机制—Scoring module,对每个通道的特征打分,选择分数高的特征进行特征融合,过滤分数低的特征,避免引入过多冗余特征,在增加少量的可训练参数情况下提高特征融合能力和检测精度;然后,为了提高Head层的预测能力,使用α-EIOU替换GIOU损失函数,提高预测框的定位和检测性能;最后,为了改善数据集数据量少、数据形式单一的问题,使用改进的Mosaic数据增强法扩充样本数据,提高模型泛化能力。实验结果表明,改进后的方法比原YOLOv5s平均精度均值高4.7%,检测速度为212 fps,同时在与其他改进型YOLOv5s的对比实验中表现较好。在环境复杂的图像中取得了较好的检测效果,可以满足复杂环境下的烟火检测任务。 相似文献
16.
针对高斯混合算法对每一像素与它前后帧的像素相关联,并未考虑与相邻像素之间的关联,无法准确地捕捉到运动物体轮廓的情况,提出一种基于混合高斯模型和Markov随机游走的运动目标检测算法。利用混合高斯模型计算像素之间的颜色信息,采用Markov随机游走提取图像的边缘信息,并与提取的运动初始目标进行与计算,同时利用高斯混合模型更新背景信息。结果表明,本方法比传统的混合高斯方法具有较高的分割精度,很好的解决了混合高斯算法边缘模糊的问题,探测率也大大的提高了。 相似文献
17.
为解决无人驾驶汽车外界环境感知系统对交通标识文字信息检测问题,提出一种在自动驾驶场景下对交通标识的文本信息进行检测并识别的两阶段方法,实现了自动驾驶信息精细化采集。首先使用YOLO检测器检测交通标识,同时使用本文改进的DB检测网络对场景内文本进行检测,将交通标识检测结果与场景文本检测结果进行交集运算得到待识别文本区域;最后使用轻量化CRNN网络对待识别区域文本进行识别。使用CSCT-1600数据集和MTWI-2018数据集分别进行训练和测试。实验结果表明,交通标识信息定位算法在召回率为92.98时精确度为94.95%,交通标识信息识别算法在F1为77.2%时识别速度为25帧。 相似文献
18.
19.