首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
透波性混杂纤维复合材料性能与应用   总被引:6,自引:3,他引:6  
研究了透波性混杂纤维复合材料的性能,结果表明,芳纶纤维和玻璃纤维按一定混杂比和混杂方式与力学性能和电性能优良的乙烯基酯树脂体系制成的混杂纤维复合材料,可作为频率选择反射器用的功能和结构材料。  相似文献   

2.
本文研究了PA纤维/环氧基体超混杂复合材料的层压工艺,确定了超混杂复合材料的铺层叠合及工艺条件,在此工艺条件下制备的复合材料具有优异的性能。  相似文献   

3.
研制了聚合物基GM超混杂复合材料CG混杂复合材料样板,比较与分析了其性能,结果表明:GMCM超混杂复合材料除具有良好的力学性能外,又兼具抗静电、耐腐蚀、耐磨损等功能等特性。  相似文献   

4.
混杂纤维复合材料的力学性能研究   总被引:3,自引:0,他引:3  
采用盐酸和乙酸对金属纤维表面进行活化处理后,使之与环氧树脂的粘结性大为改善。研究了玻璃纤维与金属网混杂增强环氧树脂复合材料的力学性能。  相似文献   

5.
纳米SiO2/UP原位混杂复合材料的性能   总被引:1,自引:0,他引:1  
分别以正硅酸乙酯、硅溶胶、纳米二氧化硅(SiO2)粉体为前驱体,通过原位聚合方法制备了不同种类的SiO2/UP(不饱和聚酯)复合树脂.采用模压成型方法,制备了SiO2/UP原位混杂复合材料,采用静态力学和动态力学方法,研究了不同种类的SiO2UP原位混杂复合材料的力学性能和流变性能.结果表明,在3种不同SiO2/UP原位混杂复合材料中,纳米SiO2粉体(质量分数为3%)/UP原位混杂复合材料的综合力学性能最好;正硅酸乙酯/UP原位混杂复合材料耐水性能最好;纳米SiO2粉体/UP原位混杂复合材料和正硅酸乙酯/UP原位混杂复合材料适合于注塑、挤出等快速成型工艺,硅溶胶/UP原位混杂复合材料适合于模塑加工工艺.  相似文献   

6.
剑麻纤维与晶须混杂增强聚丙烯复合材料   总被引:7,自引:0,他引:7  
采用熔融共混和注塑成型方法制得了剑麻短纤维(SF)和CaSO4晶须混杂增强聚丙烯(PP)复合材料,研究了复合材料的热性能、微观结构和力学性能。结果表明,晶须提高了复合材料的热稳定性,阻碍了PP的结晶,降低了复合材料中PP相的结晶度和结晶速率;SF和晶须提高了复合材料的模量和韧性,但由于混杂增强复合材料弱界面键合的制约,晶须的高强性能并没有在复合材料中充分表现出来。  相似文献   

7.
本文对碳纤维,玻璃纤维混杂纤维复合材料进行了热膨胀系数计算,计算结果表明,环向碳纤维的加入可使碳纤维增强复合材料的纵向热膨胀系数趋于正值,而同等厚度环向玻璃纤维的加入却使碳纤维增强复合材料的纵向热膨胀系数更趋于负值,从而增加了复合材料零膨胀设计范围。  相似文献   

8.
王进 《中国塑料》2000,14(8):10-17
通过与热液晶原位复合材料的对比,系统阐述了具有柔性分子链的普通热塑性树脂就地成纤增强增韧高聚物的国仙外研究进展,着重对近几年来该技术在成纤机理、控制因素以及结构与性能等方面的研究成果作了初步总结。  相似文献   

9.
用人工神经网络预测混杂复合材料混杂效应   总被引:1,自引:0,他引:1  
本研究建立一个二输入单输出的BP人工神经网络模型,并用QBASIC语言编制了相应的软件。利用该神经网络模型对混杂效应与混杂比及分散度系数间关系进行了预测。研究结果表明,网络经过61223次的迭代,预潮值误差为0.12%,具有很高的预测精度,可用于混杂复合材料混杂效应的预测。  相似文献   

10.
碳纤维/玻璃纤维混杂复合材料性能研究   总被引:3,自引:2,他引:3  
以玻璃纤维毡和玻璃纤维布为夹芯材料、碳纤维为表层材料,制备了混杂纤维增强复合材料,测试了在不同碳纤维含量和不同碳纤维辅层方向时增强复合材料的纵向拉伸强度 和冲击强度等力学性能。结果表明:该杂方式经济且有效。  相似文献   

11.
热致性液晶高分子增强复合材料研究进展   总被引:1,自引:0,他引:1  
从材料组成、共混加工、形态结构及材料性能诸方面对热致液晶高分子聚合物(TLCP)增强复合材料的最新研究进展进行了综述,并指出该材料良好的应用开发前景。  相似文献   

12.
混杂纤维浆状模塑(JMC)复合材料及其成型工艺   总被引:1,自引:0,他引:1  
本文提出一种浆状模塑料的复合材料作成型工艺,以广泛适用开发和扩充新的增强材料广谱混杂使用,是一种环保,可持续发展而又易实现机械化的新工艺。  相似文献   

13.
The rheological and mechanical properties of the blends of liquid‐crystalline polyester (LCP) and poly(methyl methacrylate) (PMMA) filled with aluminum borate whiskers have been studied. It was established the combined action of reinforcing LCP and filler onto the property of PMMA matrix leads to marked reinforcing of PMMA. At 10% of filler and 30% of LCP, the tensile strength of PMMA increases by 30% and elasticity modulus by 110%, the processability being no worse. The viscosity of the blend PMMA + 30% LCP + 10% filler practically is the same as the PMMA melt viscosity at 220°C. With increasing concentration of LCP up to 30%, the filler effect in binary matrix becomes more essential. The possible reason is the preferential adsorption of LCP at the filler interface (surface segregation) and additional ordering of LCP near the surface, possible, due to additional stretching of nematic phase in the convergent flow zone. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 993–999, 2000  相似文献   

14.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
Poly(ethylene terephthalate) (PET) was blended with three different kinds of co[poly(butylene terephthalate‐p‐oxybenzoate)] copolyesters, designated B28, B46, and B64, with the level of copolyester varying from 1 to 15 wt %. All samples were prepared by solution blending in a 60/40 by weight phenol/tetrachloroethane solvent at 50°C. The crystallization behavior of samples was then studied via differential scanning calorimetry. The results indicate that these three copolyesters accelerate the crystallization rate of PET in a manner similar to that of a nucleating agent. The acceleration of PET crystallization rate was most pronounced in the PET/B28 blends with a maximum level at 10 wt % of B28. The melting temperatures for the blends are comparable with that of pure PET. The observed changes in crystallization behavior are explained by the effect of the physical state of the copolyester during PET crystallization as well as the amount of copolyester in the blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 587–593, 2000  相似文献   

16.
提出了一种制备原位混杂复合材料的新途径。将聚丙烯(PP)、热致液晶聚合物(TLCP)与玻璃纤维(GF)在高于TLCP熔点的温度下熔融共混挤出,经适当拉伸,然后造粒,得到TLCP成纤良好的PP/TLCP/GF复合材料粒料。将其在不同温度下注射成型,考察了成型温度对所得混杂复合材料中TLCP组分的形态及材料力学性能的影响。结果表明,注射成型温度对最终复合材料中TLCP形态及材料的力学性能有明显的影响。当注射温度为200℃和220℃,即低于TLCP的熔融温度较多时,所得混杂复合材料中TLCP组分保持了较好的微纤结构,复合材料具有良好的力学性能。注射成型温度为240℃时,复合材料中TLCP相开始出现熔融回缩;而当加工温度高于260℃后,TLCP分散相主要成球形。随注射成型温度升高,混杂复合材料的力学性能逐渐下降。在基体中加入聚丙烯接枝马来酸酐(PP-g-MAH)作为增容剂,可以同时改善PP与TLCP、PP与GF之间的界面黏结,从而有利于混杂复合材料力学性能的提高。  相似文献   

17.
The influence of a poly(oxybenzoate-p-trimethylene terephthalate) copolymer, designated T64, on the non-isothermal crystallization process of poly(ethylene terephthalate) (PET) was investigated. All samples were prepared by solution blending in a 60/40 by weight phenol/tetrachloroethane solvent at 50°C. The solidification process strongly depended on cooling rate and composition of system. The crystallization rate of blends was estimated by crystallization rate parameter (CRP) and crystallization rate coefficient (CRC). From these results of CRP and CRC, it was predicted that the overall non-isothermal crystallization rate of PET would be accelerated by blending with 1–15 wt% of T64. The acceleration of PET crystallization rate was most pronounced in the PET/T64 blends with 5 wt% T64. The observed changes in crystallization behavior are explained by the effect of the physical state of the copolyester during PET crystallization as well as the amount of copolymer in the blends. An Ozawa plot was used to analyze the data of non-isothermal crystallization. The obvious curvature in the plot indicated that the Ozawa model could not fit the PET/T64 blend system well, and there was an abrupt change in the slope of the Ozawa plot at a critical cooling rate.  相似文献   

18.
Ternary in situ polycarbonate (PC)/polybutylene terephthalate (PBT)/liquid crystalline polymer (LCP) composites were prepared by injection molding. The liquid crystalline polymer used was a versatile Vectra A950. The matrix of composite was composed of PC/PBT 60/40 by weight. A solid epoxy resin (bisphenol type‐A) was used as a compatibilizer for the composites. Dynamic mechanical analysis (DMA) showed that epoxy resin was effective to improve the compatibility between PC and PBT, and between PC/PBT and LCP, respectively. Tensile tests revealed that the stiffness of composites shows little change with the LCP content up to 10 wt %. Above this concentration, the stiffness tended to increase with increasing LCP content. Furthermore, the tensile strengths appeared to increase with increasing LCP content, and their values were close to those predicted from the rule of mixtures. Scanning electron microscopic examination showed that LCP ribbons and short fibrils were developed in the composites containing LCP content ≤10 wt %. However, fine and elongated fibrils were formed in the skin and core sections of the composites when the LCP content reached 25 wt % and above. Thermogravimetric analysis indicated that the thermooxidative stability of the PC/PBT 60/40 blend tended to improve with increasing LCP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1827–1835, 1999  相似文献   

19.
D. Boles  B. Yalcin 《Polymer》2008,49(16):3541-3553
The effects of flow-altering inserts and mold cavity geometry on the mechanical properties of an injection molded liquid crystalline polymer were studied to produce parts with properties approaching macroscopically isotropic state. By inserting fine metal mesh barriers to the gates of the mold cavities, a large number of highly oriented microstreams are produced. After their creation these highly oriented streams of differing flow vectors intertwine and this texture remains reasonably intact even after substantial shearing and extension history imparted on them during ensuing flow into the cavity. This method is effective in the interior away from the skin regions formed under the shearing flow during injection. The local molecular orientation was determined using a matrixing microbeam WAXS technique that allows precision movement of the sample in the microbeam X-ray. Samples produced with the 1.0 mm2 mesh showed large variations in the local symmetry axis with respect to the machine as measured by microbeam X-ray diffraction incrementally from the edge to the core of the parts. In comparison, samples with no mesh insert showed only gradual changes in the tilt angle (angle between local symmetry axis and flow direction). The modulus and tensile strengths of all samples with the 1.0 mm2 mesh inserts were found to approach virtual global mechanical isotropy.  相似文献   

20.
A liquid crystalline polyester, LC3000, has been blended with polypropylene. These polymers form an incompatible and immiscible blend. Polypropylene grafted with epoxy via glycidyl methacrylate forms an effective compatibilizer. The dispersed liquid crystalline polyester particle size was decreased when the compatibilizer was used. The polyester influenced the morphology of the polypropylene continuous phase by increasing the nucleation, and the effect was enhanced when the compatibilizer was present. This was demonstrated using continuous cooling DSC where the crystallization temperatures were increased. Isothermal crystallization showed decreased crystallization half‐times with the polyester present, and these were further reduced with compatibilizer. Avrami analysis showed that the exponent values increased by an average of 0.1–0.2, so nucleation was assisted by the LC3000, and the rate coefficients were increased. The continuous cooling and isothermal DSC measurements provided complementary results. Optical microscopy showed that the spherulite size of the polypropylene was reduced. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2229–2236, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号