共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
FeCuNbSiB 非晶合金的纳米晶化及其软磁性能 总被引:2,自引:0,他引:2
采用单辊快淬法制备了宽2 mm,厚20 μm的Fe75.5Cu1 Nb3 Si13.5B7非晶薄带,通过等温退火得到了非晶纳米晶双相结构的软磁性材料,纳米晶平均晶粒尺寸为8~11 nm.利用X射线衍射(XRD)和差热分析(DTA)研究了非晶晶化后的组织与性能,发现非晶基体上析出了单一bcc结构的a-Fe(Si)固溶体.研究了Fe基合金在不同退火条件下纳米晶化后的软磁性能,结果表明:在783~865 K退火1 h后,可获得较高的饱和磁感应强度Bs 和较低的矫顽力Hc,并且在823 K退火1 h后,表现出最佳的软磁性能,饱和磁化强度Bs 为135.266 Am2·kg-1,矫顽力Hc最低为1.8 A·m-1. 相似文献
4.
FeCuNbSiB非晶纳米晶带材软磁性能和压磁性能研究 总被引:1,自引:0,他引:1
本文主要研究了Fe73.5Cu1Nb3Si13.5B9纳米晶带材在不同的热处理工艺和压应力条件下的软磁性能变化情况.结果表明:带材在550℃×1h热处理工艺时将晶化成纳米晶材料,此时带材软磁性能最好;纳米晶带材的|μ|,受压应力影响大,尤其是在小于0.2MPa压应力作用下,软磁性能变化非常敏感,|μ|随压力增加而迅速下降;带材Q值在小于0.2MPa压应力作用下变化非常敏感,Q值随压力增加而迅速下降.当压应力大于0.2MPa时,Q值随压应力变化不明显,压应力不影响带材Q值随频率的变化规律. 相似文献
5.
6.
采用单辊旋淬法制备出Fe69Co8Nb7-xVxB15Cu1(x=0,2,5,7)系列非晶合金,将非晶合金在不同温度进行退火,通过X射线衍射仪、透射电镜和B-H磁滞回线仪对退火后合金的微观组织和软磁性能进行分析。结果表明:退火温度对合金的微观组织和软磁性能影响显著,当TaTg时,由于结构弛豫,内应力的释放,非晶合金的矫顽力(Hc)降低;当Tx1TaTx2时,由于bcc结构α-Fe(Co)纳米晶相的析出,合金的饱和磁感应强度(Bs)明显增大;当TaTx2时,由于α-Fe(Co)晶粒粗化和非磁性相的析出,合金的软磁性能急剧恶化。其中Fe69Co8Nb5V2B15Cu1非晶合金在580℃退火1 h,表现出极为优异的软磁性能,其Bs=1.15 T,Hc=0.9928 A/m,μi=48460,而Fe69Co8V7B15Cu1非晶合金在650℃退火1 h,则发生软磁到硬磁性能的转变。 相似文献
7.
8.
纳米晶软磁材料在电流互感器铁芯中的应用研究 总被引:2,自引:0,他引:2
用单辊快淬法制成厚度为25-30μm,宽度为15-50mm的非晶薄带,卷绕并结合适的真空热处理后得到的电流互感器铁芯,其相对初始磁导率一般可达6000以上,相对最大磁导率达200000左右,比较了纳米晶合金铁芯与铁镍合金铁芯的磁化曲线和损耗角曲线,讨论了该新材料用于电流互感器的竞争优势所在。 相似文献
9.
金专 《特种铸造及有色合金》2005,25(1):i002-i002
本发明为一种新型纳米晶Fe-Zr-Nb-Si-Al-Cu系软磁合金超薄带及其制备工艺。由真空中频感应炉冶炼母合金,用单辊冷急装置制得非晶带,最后对非晶带进行磁场热处理,从而制得所需产品。本发明的合金超薄带具有优良的软磁性能,生产成本也较低。由本发明的超薄带制得的铁芯,其磁性能有很大改善,在国防和民用工业方面有广泛用途。 相似文献
10.
稀土改性非晶带材的制备与软磁性能研究 总被引:1,自引:0,他引:1
利用稀土La掺杂Fe73.5Cu1Nb3Si13.5B9非晶合金,成功制备了稀土La改性的非晶带材.对制得的非晶带材进行热处理和显微组织分析,最后测试了带材的软磁性能.结果表明添加La改变了非晶带材的晶化温度,随着La含量的增加,晶化温度呈下降趋势.显微金相分析表明带材表面存在纹路,且纹路随着热处理温度的变化而变化.带材中内应力分布不均造成带材的厚度随温度变化而波动.La原子加入后使非晶带材的尺寸波动范围变窄,尺寸波动的临界温度也由400℃下降到300℃;在550℃×0.5 h热处理工艺时,FeCuNbSiB(La-0.5wt%)带材综合软磁性能最佳,饱和磁感强度可达到1.7 T以上,磁导率为5306. 相似文献
11.
利用稀土La掺杂Fe73.5Cu1Nb3Si13.5B9非晶合金,成功制备了稀土La改性的非晶带材。对制得的非晶带材进行热处理和显微组织分析,最后测试了带材的软磁性能。结果表明:添加La改变了非晶带材的晶化温度,随着La含量的增加,晶化温度呈下降趋势。显微金相分析表明带材表面存在纹路,且纹路随着热处理温度的变化而变化。带材中内应力分布不均造成带材的厚度随温度变化而波动。La原子加入后使非晶带材的尺寸波动范围变窄,尺寸波动的临界温度也由400℃下降到300℃;在550℃×0.5 h热处理工艺时,FeCuNbSiB(La-0.5wt%)带材综合软磁性能最佳,饱和磁感强度可达到1.7 T以上,磁导率为5306。 相似文献
12.
研究了Mo元素部分替代Fe元素对Fe-Nb-B非晶热稳定性和软磁性能的影响。结果表明,Fe基非晶的晶化过程与合金中Mo含量密切相关,当Mo含量为1%和3%(原子分数)时,合金经历2次晶化过程;而当Mo含量为5%时,合金仅经历1次晶化过程。添加Mo元素能够有效提高Fe基非晶的玻璃化转变温度T_g和晶化起始温度T_(x1)。随着合金中Mo含量的增加,Fe基非晶的热稳定性显著改善,而非晶形成能力则略有降低。Fe_(70)Nb_6B_(23)Mo_1合金具有较低的玻璃化转变温度T_g(=830 K)和较宽的过冷液相区宽度ΔT_x(=53 K),具有最佳的非晶形成能力,与热力学参数P_(HS)的预测结果相一致。Fe_(71-x)Nb_6B_(23)Mo_x(x=1,3,5)非晶薄带具有较高的饱和磁感应强度M_s和低的矫顽力H_c,M_s值为60~84(A·m2)·kg~(-1)。Fe基非晶合金热稳定性的高低与其软磁性能具有一致性,即高热稳定性的非晶合金具有更优异的软磁性能。 相似文献
13.
14.
非晶软磁合金薄带纳米晶化过程中缺陷变化的正电子湮没研究 总被引:1,自引:0,他引:1
用正电子湮没多普勒展宽能谱测量和分析了若干急冷淬火制备的薄带,表明软磁Fe基纳米晶合金中的缺陷(自由体积)远多于其晶化前的非晶态;能够晶化成纳米晶的Fe基非晶制备态材料中的缺陷也多于类似成分但又不能晶化成纳米晶的非晶态材料中的缺陷;Fe73.0Cu1.0Nb1.5Mo2.0Si13.5B9.0合金的急冷淬火制备态在热处理过程中,低温退火时缺陷减少,高于200℃的退火导致缺陷增加,纳米晶化后的进一步退火缺陷基本不增加;Fe73.0Cu1.0Nb1.5Mo2.0Si13.5B9.0合金纳米晶化后,在所选定的测量条件下没有发现正电子湮没参数随时间、温度的变化,说明该材料缺陷结构相当稳定。 相似文献
15.
16.
简要介绍了Co基非晶纳米晶的组成及应用,讨论了Co基非晶的晶化的影响因素,以及晶化产物对磁性能的影响. 相似文献
17.
18.
19.
本文报道新型Fe_72.7,Ct_0.5Nb_2V_1.8B_10、、Fe_72Cu_1Nb_2V_1.5Mn_0.5Si_13B_10和Fe_72.8Cu_1Nb_1.5W_1.7Si_1.B_10综合磁性能。直流起始磁导率U1平依认为11.2×104、9.5×10_4和9.I×10_4对应H=0.08A/m和f=0.1且及五MHz的有效磁导率Ue的水平依次分别为2.8×10_4,0.42×10_42.5×10_4,0.35×10_4和2.35×10_4,0.38×10_4。高频铁损水平:PZ/200k依次为664,922和1000kw/m_3。/500k依次为3349、4291和5068kw/m_3;P0.55/1000k依次为720、960t和1108kW/m_3,这些都可与Fe-Cu-NbSi-B类纳米晶合金的相比,但六大优于优良的Mn-Zn钱氧体H_7,C4的水平。 相似文献