首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous and light-evoked postsynaptic currents (sPSCs and lePSCs, respectively) in retinal ganglion cells of the larval tiger salamander were recorded under voltage-clamp conditions from living retinal slices. The focus of this study is to characterize the spontaneous inhibitory PSCs (sIPSCs) and their contribution to the light-evoked inhibitory PSCs (leIPSCs) in ON-OFF ganglion cells. sIPSCs were isolated from spontaneous excitatory PSCs (sEPSCs) by application of 10 microM 6,7-dinitroquinoxaline-2,3-dione (DNQX) + 50 microM 2-amino-5-phosphonopentanoic acid (AP5). In approximately 70% of ON-OFF ganglion cells, bicuculline (or picrotoxin) completely blocks sIPSCs, suggesting all sIPSCs in these cells are mediated by GABAergic synaptic vesicles and gamma-aminobutyric acid-A (GABAA) receptors (GABAergic sIPSCs, or GABAsIPSCs). In the remaining 30% of - ganglion cells, bicuculline (or picrotoxin) blocks 70-98% of the sIPSCs, and the remaining 2-30% are blocked by strychnine (glycinergic sIPSCs, or GLYsIPSCs). GABAsIPSCs occur randomly with an exponentially distributed interval probability density function, and they persist without noticeable rundown over time. The GABAsIPSC frequency is greatly reduced by cobalt, consistent with the idea that they are largely mediated by calcium-dependent vesicular release. GABAsIPSCs in DNQX + AP5 are tetrodotoxin (TTX) insensitive, suggesting that amacrine cells that release GABA under these conditions do not generate spontaneous action potentials. The average GABAsIPSCs exhibited linear current-voltage relation with a reversal potential near the chloride equilibrium potential, and an average peak conductance of 319.67 +/- 252.83 (SD) pS. For GLYsIPSCs, the average peak conductance increase is 301.68 +/- 94.34 pS. These parameters are of the same order of magnitude as those measured in inhibitory miniature postsynaptic currents (mIPSCs) associated with single synaptic vesicles in the CNS. The amplitude histograms of GABAsIPSCs did not exhibit multiple peaks, suggesting that the larger events are not discrete multiples of elementary events (or quanta). We propose that each GABAsIPSC or GLYsIPSC in retinal ganglion cells is mediated by a single or synchronized multiple of synaptic vesicles with variable neurotransmitter contents. In a sample of 16 ON-OFF ganglion cells, the average peak leIPSC (held at 0 mV) at the light onset is 509.0 +/- 233.85 pA and that at the light offset is 529.0 +/- 339.88 pA. The approximate number of GABAsIPSCs and GLYsIPSCs required to generate the average light responses, calculated by the ratio of the charge (area under current traces) of the leIPSCs to that of the average single sIPSCs, is 118 +/- 52 for the light onset, and 132 +/- 76 for the light offset.  相似文献   

2.
The excitatory and inhibitory conductances driving the light-evoked currents (LECs) of cat and ferret ON- and OFF-center X ganglion cells were examined in sliced and isolated retina preparations using center spot stimulation in tetrodotoxin (TTX)-containing Ringer. ON-center X ganglion cells showed an increase in an excitatory conductance reversed positive to +20 mV during the spot stimulus. At spot offset, a transient inhibitory conductance was activated on many cells that reversed near ECl. OFF-center X ganglion cells showed increases in a sustained inhibitory conductance that reversed near ECl during spot stimulation. At spot offset, an excitatory conductance was activated that reversed positive to +20 mV. The light-evoked current kinetics of ON- and OFF-center X cells to spot stimulation did not significantly differ in form from their Y cell counterparts in TTX Ringer. When inhibition was blocked, current-voltage relations of the light-evoked excitatory postsynaptic currents (EPSCs) of both ON- and OFF-X cells were L-shaped and reversed near 0 mV. The EPSCs averaged between 300 and 500 pA at -80 mV. The metabotropic glutamate receptor agonist 2-amino-4-phosphonobutyric acid (APB), was used to block ON-center bipolar cell function. The LECs of ON-X ganglion cells were totally blocked in APB at all holding potentials. APB caused prominent reductions in the dark holding current and synaptic noise of ON-X cells. In contrast, the LECs of OFF-X ganglion cells remained in APB. An increase in the dark holding current was observed. The excitatory amino acid receptor antagonist combination of D-amino-5-phosphono-pentanoic acid (D-AP5) and 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxalinedione (NBQX) was used to block ionotropic glutamate receptor retinal neurotransmission. The LECs of all ON-X ganglion cells were totally blocked, and their holding currents were reduced similar to the actions of APB. For OFF-X ganglion cells, the antagonist combination always blocked the excitatory current at light-OFF; however, in many cells, the inhibitory current at light-ON remained. ON-center X ganglion cells receive active excitation during center illumination, and a transient inhibition at light-OFF. In contrast OFF-center X ganglion cells experience a sustained active inhibition during center illumination, and a shorter increase in excitation at light-offset. Cone bipolar cells provide a resting level of glutamate release on X ganglion cells on which their light-evoked currents are superimposed [corrected].  相似文献   

3.
AMPA/kainate (KA) receptors mediate a component of ganglion cell excitatory postsynaptic currents (EPSCs). We investigated whether desensitization at these receptors contribute to the shape of transient EPSCs in ON-OFF ganglion cells. Whole-cell, voltage-clamp recordings were made from ganglion cells in the retinal slice or in isolation. EPSCs were evoked by either stimulating the slice with light or puffing K+ at the outer plexiform layer (OPL). The AMPA/KA receptor-mediated component of the EPSCs was isolated by including NMDA receptor antagonists in the bath. Strychnine and picrotoxin blocked inhibitory inputs. In isolated ganglion cells, cyclothiazide (10 microM), which blocks desensitization in non-NMDA receptors, enhanced both the amplitude and the duration of currents evoked by puffs of AMPA or glutamate. EPSCs evoked by K(+)-puffs in the OPL were also enhanced by cyclothiazide (30 microM). When AMPA/KA receptors were blocked with NBQX (10 microM), no enhancement of the EPSCs by cyclothiazide was observed, indicating that cyclothiazide did not act presynaptically. Cyclothiazide also enhanced the amplitude and duration of both the ON and OFF light-evoked (L-) EPSCs recorded in ON-OFF ganglion cells. Current-voltage relationships showed the enhancement was not voltage dependent. When control and enhanced responses where normalized, it was observed that the rate of desensitization of both the ON and OFF L-EPSCs was decreased by cyclothiazide. Cyclothiazide selectively enhanced the AMPA/KA receptor-mediated component of ganglion cells EPSCs, suggesting that desensitization of AMPA/KA receptors shape transient L-EPSCs.  相似文献   

4.
Glutamate is the most prominent excitatory neurotransmitter in the retina and brain. It has become clear that the physiology of many glial cells, including retinal Müller cells, is modified by a host of neurotransmitters, including glutamate. The experiments presented here demonstrate that Müller cells isolated from the tiger salamander retina have metabotropic glutamate receptors that, when activated, lead to the release of calcium ions (Ca2+) from intracellular stores. The Ca2+-sensitive fluorescent dye, Fura-2, and video imaging microscopy were used to monitor changes in cytosolic calcium ion concentration ([Ca2+]i) evoked by glutamate (30-50 microM), (1S,3R)-ACPD (50-200 microM), quisqualate (10-50 microM), and L-AP4 (5-100 microM). Bath application of each of these metabotropic receptor agonists in the absence of extracellular Ca2+ resulted in an increase in [Ca2+]i that often began in the distal end of the cell and occurred later in the endfoot. This wavelike increase in [Ca2+]i is reminiscent of the Ca2+ waves evoked in these cells by other Ca2+ releasing agents such as ryanodine and caffeine. Extracellular application ofATP also evoked increases in [Ca2+] in Müller cells. The presence on Müller cells of receptors for retinal neurotransmitters, such as glutamate and ATP, demonstrates that these glial cells can respond to changes in the retinal extracellular environment and hence neuronal activity. Since Müller cells span almost all layers of the retina, they are likely to be exposed to most retinal neurotransmitters. The Ca2+ waves evoked in Müller cells by neurotransmitters could represent a form of signaling from the outer retinal layers to the inner ones.  相似文献   

5.
Glutamate transporters in the tiger salamander retina were studied by autoradiographic and intracellular recording techniques. When the retina was incubated with 15 microM L-[3H]glutamate, photoreceptors and Muller cells were labeled, indicating that these cells had high-affinity glutamate uptake transporters. A much higher dose of glutamate than kainate was required in the bath to produce the same membrane depolarization in horizontal cells (HCs), and the time course of glutamate-induced depolarization was much slower than that of the kainate-induced depolarization. Since glutamate is a substrate of glutamate transporters whereas kainate is not, we attribute these differences to the buffering of extracellular glutamate by glutamate transporters in the retina. D-aspartate (D-asp) increased the efficacy of bath-applied glutamate. Dihydrokainate (DHKA) exerted little effect on glutamate efficacy when applied alone, but it increased glutamate efficacy in the presence of D-asp. These results are consistent with the notion that glutamate transporters in Muller cells are D-asp sensitive and those in photoreceptors are DHKA and D-asp sensitive. Application of DHKA (1-2 mM) did not affect the dark membrane potential or the light responses in rods and cones, but it depolarized the HC dark membrane potential and reduced the HC peak and tail light responses. Our results suggest that DHKA-sensitive glutamate transporters in photoreceptors regulate glutamate levels in rod and cone synaptic clefts. They modulate dark membrane potential and the relative rod cone inputs in retinal HCs.  相似文献   

6.
We studied the morphology, photic responses, and synaptic connections of ON-OFF amacrine cells in the cat retina by penetrating them with intracellular electrodes, staining them with horseradish peroxidase, and examining them with the electron microscope. In a sample of seven cells, we found two different morphological types: the A19, which ramifies narrowly in stratum 2 (sublamina a) of the inner plexiform layer, and the A22, which ramifies mostly in stratum 4 (sublamina b) but extends some dendrites to sublamina a. Both of these cell types have axon-like processes that extend > 800 microns from the conventional dendritic arbor. ON-OFF amacrine cells in our sample had receptive fields (1.7 +/- 0.3 mm diameter) that were broader than their dendritic arbors (425 +/- 35 microns diameter) and that extended over the region of axon-like processes. In addition, we found many features in common with ON-OFF amacrine cells in poikilotherm vertebrates: a broad receptive field without surround antagonism, two sizes of spike-like events, narrow dynamic range (1 log unit intensity), and excitatory postsynaptic potentials at light on and light off. Two A19 amacrine cells were examined in the electron microscope: most synaptic inputs (93 and 76%, respectively) to either cell were from amacrine cells, with minor inputs from cone bipolar cells. Synaptic outputs were to bipolar, amacrine, and ganglion cells, including the OFF-alpha cell.  相似文献   

7.
Postsynaptic receptors in bipolar cells were studied by focal application of glutamate and GABA to the outer and inner plexiform layers (OPL and IPL) under visual guidance in living retinal slices of the tiger salamander. Two different types of conductance change could be elicited in bipolar cells by applying glutamate to the OPL. In off-center cells, which had axon telodendria ramifying in the distal 55% of the IPL, glutamate elicited a conductance increase associated with a reversal potential near -5 mV. In on-center cells, which had telodendria stratified in the proximal 45% of the IPL, glutamate caused a conductance decrease associated with a reversal potential near -11 mV. These observations suggest that glutamate gates relatively nonspecific cation channels at synapses between photoreceptors and bipolar cell dendrites. Application of glutamate to the IPL elicited no conductance change in Co2+ Ringer's solution, but in normal Ringer's it generated a conductance increase associated with a reversal potential near the chloride equilibrium potential (ECl). These findings are consistent with the notion that glutamate receptors exist in GABAergic and/or glycinergic amacrine cells, and that glutamate in the IPL depolarizes these cells, causing GABA and/or glycine release and the opening of chloride channels in bipolar cell axon terminals. In Co2+ Ringer's, application of GABA at the OPL elicited no conductance changes in bipolar cells, suggesting that GABA receptors do not exist on bipolar cell dendrites. Applied at the IPL, GABA elicited large conductance increases associated with a reversal potential near ECl. Implications of these results for the functional circuitry of the tiger salamander retina are discussed.  相似文献   

8.
Responses of bipolar cells, cone photoreceptors, and horizontal cells were recorded intracellularly in superfused eyecup preparations of the tiger salamander (Ambystoma tigrinum). Contrast flashes of positive and negative polarity were applied at the center of the receptive field while the entire retina was light adapted to a background field of 20 cd/m2. For small contrasts, many bipolar cells showed remarkably high contrast gain: up to 15-20% of the bipolar response was evoked by a contrast step of 1%. There was considerable variation from cell to cell but, on average, no striking differences in contrast gain were found between the depolarizing (Bd) and hyperpolarizing (Bh) bipolar cells. Quantitative comparisons of contrast/response measurements for cone photoreceptors and cone-driven bipolars suggest that the high contrast gain of bipolars is the consequence of a 5-10 x amplification of small signals across the cone-->bipolar synapse. Bipolar cells had a very restricted linear range of response and tended to saturate at stimulus levels that were within the linear range of the cone response. The contrast/response of horizontal cells was similar to that of cones and differed markedly from that of Bh cells. For steps of equal contrast, the latency of the Bh cells was approximately 20 ms shorter than that of the Bd cells regardless of the contrast magnitude. For both bipolar cells and cones, the effect of contrast polarity on latency seems largely due to the absolute value of the light step, delta L. In the large signal domain, properties of the contrast responses of bipolar cells varied appreciably, both within and between the Bd and Bh classes. Cells of either class could be positive- or negative-contrast dominant. These and additional results show that in the light-adapted retina, the bipolar population is functionally diverse and has the potential to provide a rich substrate for distributed encoding of visual images.  相似文献   

9.
1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.  相似文献   

10.
When the quinoxaline NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline), a KA/AMPA antagonist, is bath applied to the tiger salamander retina, a paradoxical action is evident in the light-evoked synaptic responses of ganglion cells: NBQX enhances excitatory synaptic currents at light onset observed under whole-cell voltage-clamp conditions in a perfused retinal slice preparation. This observation was surprising because synaptic inputs into ganglion cells that are mediated by KA/AMPA receptors are entirely blocked by NBQX. Thus, the NBQX-enhanced current is entirely mediated by NMDA receptors. The purpose of this study was to determine the mechanism(s) by which blocking KA/AMPA receptors appears to enhance NMDA currents. Using hyperosmotic sucrose stimulation to activate neurotransmitter release from the inner retina, we observed that NBQX augmented the sucrose-evoked response, suggesting that at least a component of this enhancement may reside in the inner retina. NBQX does not enhance NMDA currents activated by bath applied NMDA, demonstrating that the NBQX-induced enhancement does not result from modulation of NMDA receptors. Voltage-clamp studies, carried out at the appropriate holding potential, indicate that NBQX enhances glutamatergic transmission and reduces inhibitory inputs onto ganglion cells. In the presence of strychnine and picrotoxin, the NBQX-induced enhancement of NMDA currents is eliminated, suggesting that NBQX facilitates the expression of NMDA currents by a selective and partial reduction of inhibitory mechanisms. Additional studies suggest that part of the NMDA enhancement by NBQX is evident at the postsynaptic level, but a presynaptic component probably also participates, perhaps at the level of bipolar cell terminals. One way to account for this observation is to assume that a subpopulation of inhibitory amacrine cells requires KA/AMPA receptors exclusively for their synaptic activation: previous studies of sustained amacrine cells support this interpretation. Thus the NBQX-induced enhancement phenomenon may reflect a network-selective distribution of NMDA and KA/AMPA receptors among third-order neurons.  相似文献   

11.
Previous studies have shown that directionally selective (DS) retinal ganglion cells cannot only discriminate the direction of a moving object but they can also discriminate the sequence of two flashes of light at neighboring locations in the visual field: that is, the cells elicit a DS response to both real and apparent motion. This study examines whether a DS response can be elicited in DS ganglion cells by simply stimulating two neighboring areas of the retina with high external K+. Extracellular recordings were made from ON-OFF DS ganglion cells in superfused rabbit retinas, and the responses of these cells to focal applications of 100 mM KCl to the vitreal surface of the retina were measured. All cells produced a burst of spikes (typically lasting 50-200 ms) when a short pulse (10-50 ms duration) of KCl was ejected from the tip of a micropipette that was placed within the cell's receptive field. When KCl was ejected successively from the tips of two micropipettes that were aligned along the preferred-null axis of a cell, sequence-dependent responses were observed. The response to the second micropipette was suppressed when mimicking motion in the cell's null direction, whereas an enhancement during apparent motion in the opposite direction frequently occurred. Sequence discrimination in these cells was eliminated by the GABA antagonist picrotoxin and by the Ca(2+)-channel blocker omega-conotoxin MVIIC, two drugs that are known to abolish directional selectivity in these ganglion cells. The spatiotemporal properties of the K(+)-evoked sequence-dependent responses are described and compared with previous findings on apparent motion responses of ON-OFF DS ganglion cells.  相似文献   

12.
The dendrites of ganglion cells initially ramify throughout the inner plexiform layer of the developing retina before becoming stratified into ON or OFF sublaminae. This ontogenetic event is thought to depend on glutamate-mediated afferent activity, because treating the developing retina with the glutamate analog 2-amino-4-phosphonobutyrate (APB), which hyperpolarizes ON cone bipolar cells and rod bipolar cells, thereby preventing their release of glutamate, effectively arrests the dendritic stratification process. To assess the functional consequences of this manipulation, extracellular recordings were made from single cells in the A laminae of the dorsal lateral geniculate nucleus and from the optic tract in mature cats that had received intraocular injections of APB during the first postnatal month. Such recordings revealed that stimulation of the APB-treated eye evoked both ON as well as OFF discharges in 37% of the cells tested. (As expected, when the normal eye was activated, virtually all cells yielded only ON or OFF responses.) The proportion of ON-OFF cells found here corresponds closely to the incidence of multistratified dendrites observed previously in anatomical studies of APB-treated cat retinas. This suggests that the ganglion cells with multistratified dendrites receive functional inputs from ON as well as OFF cone bipolar cells. This interpretation is further supported by the finding that the proportion of ON-OFF cells was very similar in the geniculate layer innervated by the treated eye and in the optic tract. The cells activated by the APB-treated eye were also found not to show response suppression when flashing stimuli of increasing size were used. This suggests that exposing the developing retina to APB perturbs the neural circuitry mediating the antagonistic center-surround organization found in normal receptive fields. The functional changes evident after treating the developing retina with APB suggest that it should now be feasible to assess how the segregation of ON and OFF retinal pathways relates to organizational features at higher levels of the visual system, such as orientation selectivity in cortical cells.  相似文献   

13.
A "reduced retina" preparation, consisting of the photoreceptor layer attached to the pigment epithelium in the eyecup, was used to study the pharmacology of the calcium channels controlling glutamate release by photoreceptors in Xenopus. Glutamate release was evoked either by dark adaptation or by superfusion with elevated (20 mM) potassium medium. Both darkness- and potassium-induced release were blocked by cadmium (200 microM). The N-type calcium channel blocker, omega-conotoxin GVIA (500 nM), the P-type calcium channel blocker, omega-agatoxin IVA (20 nM), and the P- and Q-type channel blocker omega-conotoxin MVIIC (1 microM) had no effect on glutamate release. In contrast, the dihydropyridines, nifedipine (10 microM) and nitrendipine (10 microM), which affect L-type calcium channels, blocked both darkness- and potassium-induced release. Bay K 8644 (10 microM), which promotes the open state of L-type calcium channels, enhanced glutamate release. These results indicate that photoreceptor glutamate release is controlled mainly by dihydropyridine-sensitive calcium channels. A dependence of glutamate release on L-type calcium channels also has been reported for depolarizing bipolar cells of a fish retina. Thus, it appears that non-inactivating L-type calcium channels are appropriate to mediate transmitter release in neurons whose physiological responses are sustained, graded potentials.  相似文献   

14.
Electrophysiological and pharmacological methods were used to examine the role of glutamate in mediating the excitatory and inhibitory responses produced by the N2v rasp phase neurons on postsynaptic cells of the Lymnaea feeding network. The N2v --> B3 motor neuron excitatory synaptic response could be mimicked by focal or bath application of -glutamate at concentrations of >/=10(-3) M. Quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were potent agonists for the B3 excitatory glutamate receptor (10(-3) M), whereas kainate only produced very weak responses at the same concentration. This suggested that non-N-methyl--aspartate (NMDA), AMPA/quisqualate receptors were present on the B3 cell. The specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M) blocked 85% of the excitatory effects on the B3 cell produced by focal application of glutamate (10(-3) M), confirming the presence of non-NMDA receptors. CNQX also blocked the major part of the excitatory postsynaptic potentials on the B3 cell produced by spontaneous or current-evoked bursts of spikes in the N2v cell. As with focal application of glutamate, a small delayed component remained that was CNQX insensitive. This provided direct evidence that glutamate acting via receptors of the non-NMDA, AMPA/quisqualate type were responsible for mediating the main N2v --> B3 cell excitatory response. NMDA at 10(-2) M also excited the B3 cell, but the effects were much more variable in size and absent in one-third of the 25 B3 cells tested. NMDA effects on B3 cells were not enhanced by bath application of glycine at 10(-4) M or reduction of Mg2+ concentration in the saline to zero, suggesting the absence of typical NMDA receptors. The variability of the B3 cell responses to NMDA suggested these receptors were unlikely to be the main receptor type involved with N2v --> B3 excitation. Quisqualate and AMPA at 10(-3) M also mimicked N2v inhibitory effects on the B7 and B8 feeding motor neurons and the modulatory slow oscillator (SO) interneuron, providing further evidence for the role of AMPA/quisqualate receptors. Similar effects were seen with glutamate at the same concentration. However, CNQX could not block either glutamate or N2v inhibitory postsynaptic responses on the B7, B8, or SO cells, suggesting a different glutamate receptor subtype for inhibitory responses compared with those responsible for N2v --> B3 excitation. We conclude that glutamate is a strong candidate transmitter for the N2v cells and that AMPA/quisquate receptors of different subtypes are likely to be responsible for the excitatory and inhibitory postsynaptic responses.  相似文献   

15.
The mechanisms underlying the conversion of prolonged glutamate release from ribbon synapses in bipolar cells to sustained and transient excitatory postsynaptic responses in identified retinal amacrine cells were studied in tiger salamander (Ambystoma tigrinum) retina. A retina slice preparation with whole cell patch recording techniques under voltage- and current-clamp conditions was used to assay the electrical properties of bipolar and amacrine cells. Amacrine cells were categorized into two basic forms: (i) transient amacrine cells that respond to a step of light with a burst of spikes only at the transitions of the step; and (ii) sustained amacrine cells that respond with continuous spiking during the entire light step. The two cell types each had a characteristic morphology: transient amacrine cells possessed wide dendritic fields (chi = 375 microns), while sustained cells had much more narrowly confined dendritic fields (chi = 85 microns). Whole cell voltage-gated currents of the transient and sustained cell types were not significantly different. Both cell types had spikes that were sensitive to tetradotoxin (TTX, 0.3 microM) with voltage deflections of up to 100 mV. Light-evoked excitatory synaptic currents relaxed rapidly in transient neurons (tau 1/2 = 100 ms) and more slowly in sustained neurons (tau 1/2 = 1.2 s). EPSCs in both cells reversed near 0 mV. Rapid application of glutamate or kainate elicited rapidly desensitizing ionic currents (tau 1/2 = 85 ms) followed by a slowly desensitizing component. Cyclothiazide, a drug that eliminates rapid desensitization, lengthened the time course of the glutamate gated current from tau 1/2 = 85 ms to about 3 s, and the relaxation kinetics of the glutamatergic EPSC from tau 1/2 = 85 ms to about 1.0 s. These data suggest that a key determinant in forming transient versus sustained responses in amacrine cells of vertebrate retina is the differences in their excitatory, glutamatergic synaptic inputs, and that rapid desensitization of glutamate receptors plays a role in converting the presynaptic signal associated with sustained glutamate release into a postsynaptic, transient signal at the ribbon synapse.  相似文献   

16.
The polyamines spermine and spermidine are present in neural tissue, but their functions there are not well understood. Recent work suggests that the NMDA subtype of glutamate receptors, other glutamate receptor subtypes, and certain K(+)-channels, are neural targets for polyamines. To better understand the neuron-specific roles of polyamines, we have developed antibodies that interact with spermine and spermidine in aldehyde-fixed tissue and used these antibodies in immunocytochemical studies to determine the cellular localization of these polyamines in the tiger salamander retina. The affinity-purified, polyclonal antibodies were highly specific for spermine and spermidine, exhibiting < 1% cross reactivity with putrescine, and virtually no cross-reactivity with GABA, arginine, lysine, or glutaraldehyde. Polyamine labeling was most abundant in cells in the inner half of the inner nuclear layer and in the ganglion cell layer. Some cells in the outer half of the inner nuclear layer are labeled, and there was some labeling in both synaptic layers. Double-labeling experiments indicated (1) all GABAergic amacrine cells were polyamine-positive; and (2) all ganglion cells (identified by back-filling after microinjections of rhodamine in the optic nerve) were polyamine-positive. These results are consistent with a role for polyamines as modulators of NMDA receptor function and channel function in the inner retina.  相似文献   

17.
Glutamate is the major excitatory neurotransmitter in the vertebrate retina. Native glutamate transporters have been well characterized in several retinal neurons, particularly from the salamander retina. We have cloned five distinct glutamate transporters from the salamander retina and examined their localization and functional properties: sEAAT1, sEEAAT2A, sEAAT2B, sEAAT5A and sEAAT5B. sEAAT1 is a homologue of the glutamate transporter EAAT1 (GLAST), sEAAT2A and sEAAT2B are homologues of EAAT2 (GLT-1) and sEAAT5A and sEAAT5B are homologues of the recently cloned human retinal glutamate transporter EAAT5. Localization was determined by immunocytochemical techniques using antibodies directed at portions of the highly divergent carboxy terminal. Glutamate transporters were found in glial, photoreceptor, bipolar, amacrine and ganglion cells. The pharmacology and ionic dependence were determined by two-electrode voltage clamp recordings from Xenopus laevis oocytes which had previously been injected with one of the glutamate transporter mRNAs. Each of the transporters behaved in a manner consistent with a glutamate transporter and there were some distinguishing characteristics which make it possible to link the function in native cells with the behavior of the cloned transporters in this study.  相似文献   

18.
Metabotropic glutamate receptors have been implicated in modulation of synaptic transmission in many different systems. This study reports the effects of selective activation of metabotropic glutamate receptors on synaptic transmission in intracellularly recorded locus coeruleus neurons in brain slice preparations. Perfusion of either L-2-amino-4-phosphonobutyric acid (L-AP4; 0.1-500 microM) or (+/-)-1-aminocyclopentane-trans-1,3,dicarboxylic acid (t-ACPD; 0.1-500 microM) caused a depression of excitatory postsynaptic potentials in a dose-dependent fashion to about 70% inhibition. Both agonists exerted their effects at relatively low concentrations with estimated EC50s of 2.6 microM and 11.5 microM for L-AP4 and t-ACPD, respectively. This inhibition was not observed with the potent group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG; 100 microM). Conversely, (R)-4-carboxy-3-hydroxyphenyl-glycine (4C-3H-PG), a group I antagonist/group II agonist, and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC), a novel and specific group II agonist, also caused an inhibition of excitatory postsynaptic potentials. Both t-ACPD and L-AP4 produced an increase in paired-pulse facilitation, and failed to change the locus coeruleus response to focally applied glutamate, indicating a presynaptic locus of action. The L-AP4 inhibition was antagonized by (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP4: group III antagonist) but not by (RS)-alpha-methyl-4-carboxyphenylglycine [(RS)-MCPG; mixed antagonist], suggesting that this agonist acts through a type 4 metabotropic glutamate receptor. Conversely, t-ACPD was antagonized by MCPG and by ethyl glutamate (group II antagonist), but not by aminoindan dicarboxylic acid (AIDA; group I antagonist) or MAP4, suggesting that this agonist acts on a type 2 or 3 metabotropic glutamate receptor. Taken together, these results suggest that two pharmacologically distinct presynaptic metabotropic glutamate receptors function in an additive fashion to inhibit excitatory synaptic transmission in locus coeruleus neurons. These receptors may be involved in a feedback mechanism and as such may function as autoreceptors for excitatory amino acids.  相似文献   

19.
We studied spiking neurons isolated from turtle retina by the whole cell version of the patch clamp. The studied cells had perikaryal diameters > 15 microns and fired multiple spikes in response to depolarizing current steps, indicating they were ganglion cells. In symmetrical [Cl-], currents elicited by puffs of 100 microM gamma-aminobutyric acid (GABA) were inward at a holding potential of -80 mV. All of the GABA-evoked current was blocked by SR95331 (20 microM), indicating that it was mediated by a GABAA receptor. The GABA-evoked currents were unaltered by eliciting a transmembrane calcium current either just before or during the response to GABA. On the other hand caffeine (10 mM), which induces Ca2+ release from intracellular stores, inhibited the GABA-evoked current on average by 30%. The caffeine effect was blocked by introducing the calcium buffer bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the cell but was unaffected by replacing [Ca2+]o with equimolar cobalt. Thapsigargin (10 microM), an inhibitor of intracellular calcium pumps, and ryanodine (20 microM), which depletes intracellular calcium stores, both markedly reduced a caffeine-induced inhibition of the GABA-evoked current. Another activator of intracellular calcium release, inositol trisphosphate (IP3; 50 microM), also progressively reduced the GABA-induced current when introduced into the cell. Dibutyryl adenosine 3'5'-cyclic monophosphate (cAMP; 0.5 mM), a membrane-permeable analogue of cAMP, did not reduce GABA-evoked currents, suggesting that cAMP-dependent kinases are not involved in suppressing GABAA currents, whereas calmidazolium (30 microM) and cyclosporin A (20 microM), which inhibit Ca/calmodulin-dependent phosphatases, did reduce the caffeine-induced inhibition of the GABA-evoked current. Alkaline phosphatase (150 micrograms/ml) and calcineurin (300 micrograms/ml) had a similar action to caffeine or IP3. Antibodies directed against the ryanodine receptor or the IP3 receptor reacted with the great majority of neurons in the ganglion cell layer. We found that these two antibodies colocalized in large ganglion cells. In summary, intracellular calcium plays a role in reducing the currents elicited by GABA, acting through GABAA receptors. The modulatory action of calcium on GABA responses appears to work through one or more Ca-dependent phosphatases.  相似文献   

20.
Recordings of whole-cell synaptic current responses elicited by electrical stimulation of dorsal roots were made from motoneurons, identified by antidromic invasion, in isolated spinal cord preparations from five- to eight-day-old Wistar rats. Supramaximal electrical stimulation of the dorsal root evoked complex excitatory postsynaptic currents with mean latencies (+/- S.E.M.) of 6.1 +/- 0.26 ms, peak amplitude of -650 +/- 47 pA and duration of 4.30 +/- 0.46 s (n=34). All phases of excitatory postsynaptic currents were potentiated to approximately 20% above control levels in the presence of the metabotropic glutamate receptor antagonists S-2-amino-2-methyl-4-phosphonobutanoate (MAP4; 200 microM; n=15) and 2S, 1'S,2'S-2-methyl-2-(carboxycyclopropyl)glycine (MCCG; 200 microM; n=9). A similar level of potentiation was produced by the GABA(B) receptor antagonist 3-N[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2-(S)-hydroxypropyl-P-benzyl-p hosphinic acid (CGP55845; 200 nM; n=5). MAP4 (200 microM) produced a six-fold rightward shift in the concentration-effect plot for the depressant action of the metabotropic glutamate receptor agonist S-2-amino-4-phosphonobutanoate (L-AP4), whereas CGP55845 produced no significant change in the potency of L-AP4. MAP4 did not antagonize the depressant actions of baclofen (n=8), 1S,3S-1-aminocyclopentane-1,3-dicarboxylate (n=4) or 2-S,1'S,2'S-2-(carboxycyclopropyl)glycine (n=4). The metabotropic glutamate receptor antagonists produced no change in the holding current of any of the neurons, indicating that they had no significant postsynaptic excitatory actions. These results are the first to indicate a possible physiological role for metabotropic glutamate receptors in the spinal cord. Like GABA(B) receptors, they control glutamatergic synaptic transmission in the segmental spinal pathway to motoneurons. This is likely to be a presynaptic control mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号