首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is in particular of importance for HTS coils to secure a larger central magnetic field and/or a large stored energy with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle against tapes. From this point, the performance improvement of HTS coils is taken into account with an analytical model. The minimum volume coil derived from the Fabry Factor constant curve is taken concerning the original coil shape, which is often employed in low temperature superconducting coils. The coil critical current was analyzed in consideration of the anisotropic properties of the tape.The electric field of HTS tapes in the coil was calculated at the coil critical current and the high electric field portion were cut out. The optimal coil cross section is obtained by iterating this calculation process. As a result, the critical current and the stored energy density of the coil were improved. The stored energy density increased about 17% and the central magnetic field was almost kept constant regardless of 19% reduction of HTS tapes, as compared with the original coil with the rectangular cross section.  相似文献   

2.
A recent series of reference designs for Tokamak Experimental Power Reactors (EPR's) has indicated that superconducting poloidal field (PF) coils will be necessary for successful operation of these devices. It would also be desirable to use superconducting PF coils in earlier tokamak fusion devices if such coils could be developed quickly enough. In this paper, the PF coil performance requirements are briefly reviewed and some implications for the coil design are developed. A small coil (stored energy 14 kJ) has been built using construction techniques similar to those which could be employed for PF coils. The coil has been charged at rates up to 2 T/sec. Both maximum field and charging rate were limited by available power supplies. Loss measurements were carried out during pulsed operation and data for hysteretic and eddy current loss are presented. The loss measurement system used allows considerable insight into the effects of conductor motion and training.  相似文献   

3.
The large helical device (LHD) is a fusion experimental facility which has a large scale mutually coupled superconducting coil system and it is now under operation at the National Institute for Fusion Science (NIFS). This paper shows the design and the operation results of the dc power systems to drive these coils. First, the outline of the LHD and the power supplies are described. Next, a control system and the current controller for the power supplies are introduced. Finally, some experimental results are introduced.  相似文献   

4.
Hybrid magnets, the combination of a resistive inner coil with a superconducting outer one, allow to generate the highest continuous magnetic fields for a given electrical power installation. A new superconducting coil outsert has been designed to be integrated in the existing infrastructure at LNCMI-Grenoble (GHMFL). Based on the specific development of a Nb–Ti Rutherford Cable On Conduit Conductor (RCOCC) cooled at 1.8 K by a bath of superfluid helium at atmospheric pressure, the superconducting coil aims to produce a continuous magnetic field of 8.5 T in a 1.1 m bore diameter. Combined with resistive insert coils, an overall continuous magnetic field of 42+ T will be produced in a 34 mm warm aperture. The main results of the conceptual study will be presented together with first developments and tests of the RCOCC.  相似文献   

5.
C. Meuris  S. Nicollet 《低温学》2010,50(3):177-186
The Vincenta code is used to simulate the pressure increases in helium in case of a quench in the superconducting coils. We focus on two classes of coil in which helium is in direct contact with the conductor: coils consisting of cable-in-conduit conductors (as in ITER or JT-60SA), in which supercritical helium is forced through long channels; and bath-cooled coils, in which static helium is confined in short channels perpendicular to the conductor and opening into a bath (as in Tore Supra or Iseult). Various physical phenomena are responsible for the pressure increases in helium, which is subjected to strong heat flux in the conductor during a quench: at the local level, i.e. in the heated channels, the inertial forces that must be overcome to expel the fluid and the friction forces due to the induced velocity; at the global level, i.e. throughout the cryogenic system, the adiabatic compression of non-heated volumes hydraulically connected to the heated channels. Here we analyse the thermohydraulic behaviour of helium to highlight the dominant phenomena, according to the geometry of the helium flow paths. The results are applied to numerical simulation of the pressure rise in case of quench in a JT-60SA cable-in-conduit conductor (CICC) and in the bath-cooled Iseult coil.  相似文献   

6.
《低温学》1985,25(4):171-177
The development of superconducting magnets for fusion at the Japan Atomic Energy Research Institute (JAERI) is described. The objective of the project is the Fusion Experimental Reactor (FER) which will be constructed with superconducting toroidal and poloidal coils. For toroidal coils, JAERI has already developed the 8 T Japanese LCT coil and five other large coils (one NbTi and four Nb3Sn coils, from 7 T to 11 T) for the Cluster Test Programme. For poloidal coils, JAERI has developed three 30–50 kA pulsed conductors. In addition to coil development, cryogenic technology and structural material development are also in progress.  相似文献   

7.
This paper presents results of experiments performed on different combinations of five types of filters of varying efficiencies (MERV4, 6, 8, 11, and 14) and four types of evaporator coils with depths and fin geometries under clean and fouled conditions. The fouled conditions were obtained after injection of 600 g (1612 g/m2 of coil face area) of dust upstream of the filter–coil combination, which was meant to simulate a year of operation in the field. The air-side pressure drops of the coils and filters and air-side effective heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil, the coil pressure drops increased in the range of 6–30% for an air velocity of 2.54 m/s. The impact was significantly greater for tests performed without an upstream filter (the coil pressure drops increased from 43% to 200%). The largest relative effect of fouling on pressure drop occurs for coils with fewer rows, primarily due to higher fin densities. The impact of fouling on air-side effective heat transfer coefficients was found to be relatively small, which ranged from −14% to 4%. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. However, with large dust deposits, heat transfer is degraded because the dust also acts as insulation and creates an uneven air velocity.  相似文献   

8.
JackPot is a new model that is used to analyse how and to what extend current non-uniformity among strands in a cable-in-conduit conductor (CICC) affects its performance. The joints at the extremities of the CICCs in coils and short samples introduce a non-uniform current distribution among the strands. A detailed and quantitative study down to strand level is required to explain the involved phenomena, to understand their implications on short sample and coil tests and to provide adequate solutions for improvements. The model can be used to evaluate the influence of the joint design and to define its baseline requirements for short-sample qualification testing, and for optimum magnet performance of for example the ITER coils.JackPot is an electrical network model that simulates the interaction between the superconducting strands in the cable (following their precise trajectories), the interstrand contact resistances, the conduit, and the cable’s connection to the joints. The backbone of JackPot is its cable geometry model, from which all relevant properties are derived. All parameters are derived from well defined experimental measurements on conductor sections and joints, except the axial strain for Nb3Sn strands, which is the only free parameter in the model.The simulations demonstrate that the current non-uniformity is the source for a number of observed phenomena. Another conclusion is that completely filling the bottom joints and upper terminations of a short sample with solder, opposed to only (partly) soldering the cable surface, improves short-sample testing significantly for qualifying the ITER type CICCs. This paper describes the model and gives a few examples of applications for its validation.  相似文献   

9.
In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.  相似文献   

10.
K.J. Best  B. Rothe 《低温学》1979,19(2):73-76
The design, construction and test results of a compact NbTi coil system are described. The dimensions are: 198 mm outside diameter, 290 mm total length, 52 mm vertical central bore, 20 mm horizontal bore. The system consists of two assistant coils in addition to the main split pair. A total of ten wire sections is involved. Each part of the system can be separately charged or several other modes of operation are possible. So the main split pair can be used alone. In the screening mode operation one or both of the assistant coils keep the magnetic induction below 0.1 T, within certain ranges on and near the axis. Finally, in the gradient mode operation, the assistant coils are charged in the opposite direction so that a linear gradient field is superposed onto the main field. The versatility of this coil system implies the use of three independent superconducting switches.The coil system is mounted in a stainless steel dewar which has horizontal and vertical access for Mössbauer spectroscopy at various temperatures. An additional insert allows susceptibility measurements in the temperature range from 2 K up to 300 K. Details on the cryostat (designed by L. Bogner, F. Parak and W. Wiedemann) will be published later.  相似文献   

11.
General Atomic has established a high field test facility whose primary mission is to investigate the J-B-T and stability performance margins of commercial NbTi superconductor in the 10 tesla, 4.2 K region. This work is part of the overall DOE/MFE/MAGNETIC SYSTEMS effort to provide an adequate technological base for construction of superconducting toroidal field coils for the next generation of large tokamak fusion devices. The principal components of the facility are the coil/cryostat assembly, the helium refrigerator-liquefier/compressor system, and the gaseous helium recovery and storage system. The epoxy impregnated, layer wound main background field coil generates 8 tesla within its 40 cm diameter bore. The insert background field coil was layer wound with cooling channels provided by "barber pole" mylar conductor insulation. Ten tesla is generated within its 22 cm bore. The initial performance of the facility will be discussed. Future testing calls for operating test coils with implanted heating elements to simulate mechanically induced perturbations. The normal zone growth and recovery behavior will be observed for various disturbance energies. This data will then be compared with results obtained from the transient recovery analysis developed at General Atomic.  相似文献   

12.
The first 80 T dual-coil magnet was manufactured and tested at the Wuhan National High Magnetic Field Center (WHMFC). The inner coil consists of 8 layers of 2.8 mm × 4.3 mm CuNb microcomposite wire developed in China; the bore diameter is 14 mm and the outer diameter 135 mm. The outer coil was wound directly on the inner coil with 12 layers of 3 mm × 6 mm soft copper. Each conductor layer of both coils was reinforced by Zylon/epoxy composite. The inner and outer coil were driven by a 1.6 MJ/5.12 mF capacitor bank and by eight 1 MJ/3.2 mF modules, respectively. At the voltage of 14.3 kV for the inner coil and 22 kV for the outer coil, the inner and outer coils produced peak fields of 48.5 T and 34.5 T respectively, which gave a total field of 83 T. This was the first combined operation of the new capacitor banks installed at the WHMFC. We present details of the design, manufacture and test of the dual-coil magnet and discuss crucial material properties. Based on this experience, a second dual-coil magnet will be designed; the enhanced design will be discussed. With the total energy of 12.6 MJ, peak field up to 90 T is expected.  相似文献   

13.
The Large Helical Device (LHD) superconducting magnet system consists of two pairs of helical coils and three pairs of poloidal coils. The poloidal coils use cable-in-conduit (CIC) conductors, which have now been adopted in many fusion devices, with forced cooling by supercritical helium. The poloidal coils were first energized with the helical coils on March 27, 1998. Since that time, the coils have experienced 54,600 h of steady cooling, 10,600 h of excitation operation, and nineteen thermal cycles for twenty years. During this period, no superconducting-to-normal transition of the conductors has been observed. The stable operation of the poloidal coils demonstrates that a CIC conductor is suited to large-scale superconducting magnets. The AC loss has remained constant, even though a slight decrease was observed in the early phase of operation. The hydraulic characteristics have been maintained without obstruction over the entire period of steady cooling. The experience gained from twenty years of operation has also provided lessons regarding malfunctions of peripheral equipment.  相似文献   

14.
The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.  相似文献   

15.
本工作研究了一种用于核反应堆控制棒驱动机构的新型无骨架耐高温线圈,通过研发环氧树脂改性有机硅树脂复合体系的耐高温、耐辐照绝缘漆,制备了耐高温、耐辐照的绕组线和引接线;通过研发无骨架线圈结构和其特殊制造工艺,制备了无骨架耐高温模型线圈;通过耐热性评定,证明无骨架耐高温线圈的耐热等级达到258,提高了核反应堆控制棒驱动机构用线圈的耐温等级,并具有良好的耐辐照性能,满足目前国内CPR1000、华龙一号等主力压水堆核电站中控制棒驱动机构的使用要求。无骨架耐高温线圈在提高线圈耐温等级、降低线圈成本的同时,减小了因线圈骨架耐温等级低、成型性能差、易变形等问题带来的线圈失效、卡涩等风险,提高了控制棒驱动机构的运行性能和可靠性,为核反应堆控制棒驱动机构用耐高温线圈提供了新的发展方向。  相似文献   

16.
In this paper, we describe the optimization of endoluminal planar coils for high-resolution magnetic resonance imaging of gastrointestinal walls. For maximizing the coil performances, electromagnetic parameters of planar rectangular radio frequency (RF) coils were simulated using the finite element method. The eddy currents were fully computed to determine the electromagnetic losses in both wires and surrounding environment. Geometric parameters of the coils (length, conductive layer section, number of layers, and turns number) were varied. Based on simulations, five loop RF coil prototypes with planar geometry were designed to fit in a 5-mm inner diameter catheter. In the immediate vicinity of single-loop coils, the signal-to-noise ratio (SNR) decreases with the length of the coil, whereas penetration depth increases with it. The double-loop coil offers a greater penetration depth in comparison to the same length single-loop coil. The multilayer coil preserves the RF field B/sub 1/ by inducing a reduction in the electrical resistance of the conductor, therefore resulting in an increase in SNR. Experimental verifications were performed on a 1.5 T clinical scanner. Simulation results were found to be in good agreement with that of MR experiments. Developed prototypes provided a dramatic increase in SNR at the region of interest.  相似文献   

17.
The Laboratoire National des Champs Magnétiques Intenses (LNCMI) develops different types of coils suited to specific experiments. We present some recent developments on magnet design. Several coils are dedicated to experiments in large scale facilities in France and Switzerland. A 30 T split-pair coil for X-rays diffraction and one 40 T coil for plasma physics at the LULI, two 30 T coils with axial access (one with an conical bore) for X-ray diffraction and absorption experiments. A 40 T wide angle conical access solenoid with a high duty-cycle for neutron scattering at the ILL is being constructed. For use at the installation in Toulouse we have developed, apart from our standard 60 and 70 T coils, several special coils: a coil with a long optical path with 30 T transverse magnetic field and a 90 T long pulse dual coil system.  相似文献   

18.
We calculated an eddy current loss in a wire as a function of an applied ac field. Estimating the field at an actual coil wire and summing the losses in all points of wires we obtained a formula representing a coil loss. Based on the calculated results, we designed coils which drive thirty-two 64 kb chips. The observed loss of the coils was in good accord with the calculated one. This 2 Mb module was operated at 40 Oe rotation field of 500 kHz with the coil loss of 8 W.  相似文献   

19.
We describe a liquid helium cryostat, developed to cool SQUID-based receivers in low field MRI systems. The cryostat has a 4 L liquid helium capacity, a hold time of over 3 days and accommodates 10 cm diameter receiver coils. New vacuum insulation methods reduce the noise level by at least an order of magnitude compared to existing commercial designs. The minimum detectable field at 425 kHz, with a 5 cm diameter circular coil, was estimated to be 0.018 fT/Hz1/2 from Q-factor measurements and 0.035 fT/Hz1/2 by direct measurement with a SQUID amplifier. Further measurements indicated that most of this field noise probably originates with dielectric losses in the cryostat’s fibreglass shells.  相似文献   

20.
As the step of development of superconducting tokamak toroidal magnet system, a Cluster Test system is being constructed. The test facility has two coils, called cluster test coil (CTC), in a sector position, which provides back-ground field to a test module coil (TMC). The oval-shaped TMC has a mean width of 1.5 m and a mean height of 2.0 m. And it is designed to operate at a peak field of 8 T and an average current density of 3 KA/cm2on the winding space when CTC, operated with rated current, has 7 T as a peak field with current density of 3 KA/cm2. Experience on the Cluster Test will provide fabrication techniques and verifications of computer codes for future toroidal coil design principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号