首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X.X. Chu  Z.X. Wu  R.J. Huang  Y. Zhou 《低温学》2010,50(2):84-3397
Polyetheretherketone (PEEK) has been widely used as matrix material for high performance composites. In this work, 30% chopped glass fibers reinforced PEEK composites were prepared by injection molding, and then the tensile, flexural and impact properties were tested at different temperatures. The modulus, strength and specific elongation of glass fibers reinforced PEEK at room temperature, 77 K and 20 K have been compared. And the fracture morphologies of different samples were investigated by scanning electron microscopy (SEM). The results showed a dependence of mechanical properties of glass fibers reinforced PEEK composites on temperature. The coefficient of thermal expansion of unfilled PEEK and glass fibers reinforced PEEK were also investigated from 77 K to room temperature. The results indicated that the thermal expansion coefficient (CTE) of PEEK matrix was nearly a constant in this temperature region, and it can be significantly decreased by adding glass fibers.  相似文献   

2.
In this work, the thermal stress development in anisotropic fiber-reinforced polymer composites is investigated for temperatures below the glass transition temperature of the resin. By applying two independent experimental methodologies, it was found that the initial thermal (residual) strain in the reinforcing fibers is compressive of about − 0.04% at ambient temperatures. This is due to the mismatch of the thermal expansion coefficient between the polymer matrix and fiber, as the material is cooled down from the processing temperature. However, on reheating the composites the compressive stress in the fiber gradually diminishes and becomes zero at 50 °C. Further heating to 100 °C introduces tensile strains in the fiber of maximum of 0.13%. The conformity of these results to analytical models that relate the composite thermal strain to the thermal expansion coefficients of fiber and resin, as well as, the fiber volume fraction, is examined. Finally, the possibility of tailoring the sign (positive, negative or, even, zero) of the composite thermal expansion coefficient of certain advanced composites by simply varying the thermal expansion of the polymer matrix, is discussed.  相似文献   

3.
The adhesive behaviour of epoxy-glass microballoon composites was studied at 25 and 75° C for plate and tubular lap joints of various combinations. It was found that the adhesive bond for various joints is enhanced through addition of microballoons. High adhesive force is observed at higher temperatures for various joints combinations where the thermal stresses are lowered and the bond is strengthened. The obtained results for various joint combinations demonstrate that high strength can be achieved when significant thermal stresses do not exist. The filler effect on some physical properties such as density, glass transition temperature, thermal expansion and Poisson's ratio of the epoxy composites is also investigated. Simple analysis indicates the differential thermal expansion coefficient between the adhesive and metallic joints and bulk modulus of the adhesive dictates the stress state.  相似文献   

4.
We have investigated a composite of cubic α-ZrW2O8 and epoxy with a high ceramic loading for its thermal expansion properties at cryogenic temperatures. The composite was fabricated by allowing the ceramic to sediment in the epoxy resin before curing, using only the dense bottom fraction of the composite for further measurements. Density measurements and thermogravimetric analysis showed that the samples repeatably consisted of approximately 60 vol% tungstate without significant voids. The coefficient of thermal expansion was measured by dilatometry at temperatures from 25 to 300 K, and we found negative thermal expansion occurring at temperatures below about 100 K. The observed behavior is consistent with predictions produced by a variational model, which shows that the high ceramic loading is necessary to reliably achieve negative thermal expansion in the composite. The composite has potential applications as compensators for unwanted thermal expansion at low temperatures and for fiber-optic cryogenic temperature sensors.  相似文献   

5.
Glass matte/epoxy-reinforced composites provide high-quality electrical insulation, structural integrity, and environmental protection in solid cast transformers. The thermal expansion characteristics of those composites are very important; the thermal expansion must be compatible with the conductor of the transformer in order to minimize stresses and prevent decohesion between the composite and the copper. The glass matte orientation and loading greatly influence the thermal expansion characteristics of the composite. A section was removed from a glass matte/bisphenol A epoxy-insulated, copper conductor wound cylindrical transformer coil. The linear expansion coefficients of the glass matte/epoxy composite were determined by differential dilatometry for three mutually perpendicular orientations with respect to the cylindrical coil. The expected reduction in thermal expansion of the epoxy in the tangential and axial directions due to the glass matte, which produced improved thermal expansion compatibility with the copper windings, was demonstrated. The measured linear thermal expansion coefficients were compared with theoretical values derived from a model for thermal expansion of a two-dimensional isotropic composite filled with fibers randomly oriented in a plane. An alternate composite system used for solid cast coil transformers, consisting of a cycloaliphatic resin filled with silica flour, was also investigated for comparison.Paper presented at the Ninth International Thermal Expansion Symposium, December 8–10, 1986, Pittsburgh, Pennsylvania, U.S.A.  相似文献   

6.
Hollow glass microsphere (HGM)–filled epoxy composites, with filler content ranging from 0 to 51.3 vol.%, were prepared in order to modify the dielectric properties of the epoxy. The results showed that the dielectric constant (Dk) and dielectric loss (Df) of the composites decreased simultaneously with increasing HGM content, which was critical for the provision of superior high-frequency device performance. Other properties of the composite, such as the coefficient of thermal expansion (CTE) and the glass transition temperature (Tg), were also improved. The improvement in these properties was related to strong interaction between the HGM and epoxy, which was indicated by the formation of an interphase between the HGM and epoxy-matrix. It was unsatisfactory in this study that the thermal conductivity of the composites also decreased with HGM content. In order to obtain relatively high thermal conductivity and a low dielectric constant simultaneously, this paper suggests further adding other filler.  相似文献   

7.
The aim of this investigation was to define the optimum conditions of obtaining glass fabric-epoxy resin laminar composites with mechanical and dielectric properties that satisfy the quality needed for production of printed circuit boards for microelectronics. Commercial materials: glass woven fabric, different types of silane finish and epoxy resin were the starting materials in obtaining composites. The conditions needed for the thermal removal of the original size from glass fabric were investigated. The optimal heat treatment should be performed at temperatures less than 550 °C, while cooling rates should be as low as possible. In this manner, the fabric has less than 0.1% of residual size, and the mechanical properties remain satisfactory. Different types of adhesion promoters based on silanes were applied on heat-treated glass fabric as finishes. The quality of the composite material made of thermally and chemically treated glass fabric and epoxy resin was controled by measuring the tensile and dielectric strength of the composite. Depending on which properties of composite are of primary concern, mechanical or dielectric, a finish with an amino functional group and lower heat-treatment temperature or epoxy-modified coatings and higher heat-treatment temperature should be used for obtaining glass-fabric epoxy resin laminar composites.  相似文献   

8.
This paper reports the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid laminated composites used in the reinforcement and/or the repair of aeronautic structures. These composites were manufactured by the hand lay-up process. Their physical, thermal and mechanical behaviors are discussed in terms of moisture absorption, thermal stability, tensile strength, elastic modulus, flexural strength, flexural modulus and abrasive wear resistance. The impact of hygrothermal aging on the mechanical properties of each composite group has been also investigated.The main results indicated that after water immersion, all composites showed significant moisture absorption especially for glass/epoxy composite. Thermogravimetric analysis showed that the hybrid composite presented the best thermal stability behavior while the glass/epoxy composite the bad behavior. The mechanical properties of the carbon/epoxy composites, in the bulk material, were considerably higher than those of the glass/epoxy; the hybrid structure presented intermediate mechanical properties. The same trend was also observed in terms of wear properties. Finally, a deleterious effect on the strength of all composites due to hygrothermal exposure was established. However, carbon/epoxy composites seem to be less susceptible to aging damage after 90 days at 90 °C.  相似文献   

9.
为了提高碳纤维增强环氧树脂复合材料在低温(77 K)循环条件下的微裂纹抗性,文中采用共沉淀法制备了具有良好顺磁性的四氧化三铁/氧化石墨烯(Fe_3O_4/GO),采用红外光谱、X射线衍射、扫描电镜、透射电镜等手段研究了Fe_3O_4/GO在环氧树脂基体中的有序排列对环氧树脂及碳纤维增强环氧树脂复合材料低温性能的影响。结果表明,Fe_3O_4/GO的有序排列可有效提高环氧树脂基体的低温力学性能及降低环氧树脂基体的热膨胀系数,并可明显改善碳纤维增强环氧树脂(CF/EP)复合材料的低温微裂纹抗性;相对于纯环氧树脂,改性环氧树脂的热膨胀系数和低温环境下的微裂纹密度分别降低了36.5%和37.5%。  相似文献   

10.
This paper examines the effect of fiber orientation angles and stacking sequence on the torsional stiffness, natural frequency, buckling strength, fatigue life and failure modes of composite tubes. Finite element analysis (FEA) has been used to predict the fatigue life of composite drive shaft (CDS) using linear dynamic analysis for different stacking sequence. Experimental program on scaled woven fabric composite models was carried out to investigate the torsional stiffness. FEA results showed that the natural frequency increases with decreasing fiber orientation angles. The CDS has a reduction equal to 54.3% of its frequency when the orientation angle of carbon fibers at one layer, among other three glass ones, transformed from 0° to 90°. On the other hand, the critical buckling torque has a peak value at 90° and lowest at a range of 20–40° when the angle of one or two layers in a hybrid or all layers in non-hybrid changed similarly. Experimentally, composite tubes of fiber orientation angles of ±45° experience higher load carrying capacity and higher torsional stiffness. Specimens of carbon/epoxy or glass/epoxy composites with fiber orientation angles of ±45° show catastrophic failure mode. In a hybrid of both materials, [±45°] configuration influenced the failure mode.  相似文献   

11.
In this experimental study, the impact behavior of hybrid composite plates has been investigated. The increasing impact energy was performed on two types of hybrid composite plates (glass–carbon/epoxy) until complete perforation of specimens. An energy profiling method, showing the relationship between impact energy and absorbed energy, was used together with load–deflection curves to determine the penetration and perforation thresholds of hybrid composites. The failure processes of damaged specimens for different impact energies were evaluated by comparing load–deflection curves and images of damaged samples taken from impacted sides and non-impacted sides. Cross-sections of damaged specimens were also inspected visually and discussed to assess the extent of damage, such as fiber fracture in layers, expansion of delaminations between adjacent layers. The perforation threshold of hybrid composite impacted from surface with carbon fibers was found approximately 30% higher than that of surface with glass fibers.  相似文献   

12.
Basic design guidelines for SMA/epoxy smart composites   总被引:4,自引:0,他引:4  
The actuating ability and reliability of shape memory alloy (SMA) hybrid composites were studied in this paper. Results showed that by selecting small hysteresis SMAs such as TiNiCu alloy, SMA hybrid composites have a linear stress–temperature behavior, which is relatively easy to control. The curing process of the epoxy matrix does not affect significantly the actuating ability of the embedded TiNiCu alloy wires. A moderate prestrain of the TiNiCu wires is preferred when giving attention to both the mechanical properties and the reliability of the TiNiCu hybrid composites. Additional reinforcing fibers with a negative thermal expansion coefficient such as Kevlar fibers are helpful to strengthen the reliability of the interface and enhance the actuating ability of the SMA hybrid composites. Based on the experimental results, some basic guidelines for designing shape memory hybrid composites were proposed.  相似文献   

13.
为提高碳纤维/环氧树脂复合材料的刚性和热尺寸稳定性,首先利用短切碳纤维制备了碳纤维网络增强体(CFNR),并将其与环氧树脂复合制备了CFNR/环氧树脂新型复合材料。然后,分别利用扫描电镜和热机械分析仪对CFNR/环氧树脂复合材料的微观结构和热力学性能进行了表征。结果表明:CFNR/环氧树脂复合材料中有明显的网络节点,即碳质粘结点;CFNR/环氧树脂复合材料具有较好的导电性、较高的刚性和较低的热膨胀性,其弹性模量分别为常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的3倍和6倍,平均热膨胀系数(60~200℃)分别为常规短切碳纤维/环氧树脂复合材料的1/15及纯环氧树脂的1/40;随着温度升高,CFNR/环氧树脂复合材料、常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的弹性模量均因环氧树脂变软而降低,当温度高于80℃时,CFNR/环氧树脂复合材料的弹性模量分别约为常规短切碳纤维/环氧树脂复合材料的7倍和纯环氧树脂的近70倍。研究结论可以为开发高刚性、低膨胀聚合物基复合材料提供实验依据和理论指导。  相似文献   

14.
The temperature dependence of the thermal expansion characteristics of the AS21 magnesium alloy, AS21–25 vol% Saffil fiber composite and the Mg-10 vol% Saffil fiber composite has been measured in the temperature range from 20 to 380°C. The expansion characteristics were influenced by the residual and thermal strains. The residual strain was removed within the first thermal cycle. The relative elongation of the tensile pre-deformed AS21–25 vol% Saffil fiber composite is lower than that for the sample without deformation and for the composite pre-deformed in compression. The anisotropy of the thermal expansion is demonstrated on the Mg-10 vol% Saffil fiber composite. The coefficient of thermal expansion (CTE) in the transverse direction (TD) (the planes of the short Saffil fibers are laid perpendicular to the axis of the sample) is higher than the CTE in the longitudinal direction (LD) (the planes of the short Saffil fibers are laid parallel to the axis of the sample). The anisotropy and the thermal strain influence the thermal diffusivity for AS21 composites investigated at temperatures between 20 and 380°C.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5-8, 2005, Bratislava, Slovak Republic.  相似文献   

15.
Experimental data for carbon–carbon constituent materials are combined with a three-dimensional stationary heat-transfer finite element analysis to compute the average transverse and longitudinal thermal conductivities in carbon–carbon composites. Particular attention is given in elucidating the roles of various micro-structural defects such as de-bonded fiber/matrix interfaces, cracks and voids on thermal conductivity in these materials. In addition, the effect of the fiber precursor material is explored by analyzing PAN-based and pitch-based carbon fibers, both in the same type pitch-based carbon matrix. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibers and (b) a macro scale comparable with the thickness of carbon–carbon composite structures used in the thermal protection systems for space vehicles. The results obtain at room temperature are quite consistent with their experimental counterparts. At high temperatures, the model predicts that the contributions of gas-phase conduction and radiation within the micro-structural defects can significantly increase the transverse thermal conductivity of the carbon–carbon composites.  相似文献   

16.
为了提高碳纤维增强环氧树脂(CF/EP)复合材料在低温(77K)循环条件下的抗微裂纹性能,采用共沉淀法制备了具有良好顺磁性的Fe_3O_4修饰氧化碳纳米管(Fe_3O_4-O—MWCNTs),并研究了Fe_3O_4-O—MWCNTs在环氧树脂(EP)基体中的有序排列对EP及CF/EP复合材料低温性能的影响。结果表明:Fe_3O_4-O—MWCNTs的有序排列可有效提高EP基体的低温力学性能及降低EP基体的热膨胀系数,相对于纯EP,Fe_3O_4-O—MWCNTs改性EP的热膨胀系数降低了41.6%;相对于CF/EP复合材料,Fe_3O_4-O—MWCNTs改性CF/EP复合材料在低温环境下的微裂纹密度降低了56.2%。  相似文献   

17.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid carbon nanotube–alumina (CNT–Al2O3) filler, via chemical vapour deposition and a physically mixed CNT–Al2O3 filler, at various filler loadings (i.e., 1–5%). The tensile and thermal properties of both nanocomposites were investigated at different weight percentages of filler loading. The CNT–Al2O3 hybrid epoxy composites showed higher tensile and thermal properties than the CNT–Al2O3 physically mixed epoxy composites. This increase was associated with the homogenous dispersion of CNT–Al2O3 particle filler; as observed under a field emission scanning electron microscope. It was demonstrated that the CNT–Al2O3 hybrid epoxy composites are capable of increasing tensile strength by up to 30%, giving a tensile modulus of 39%, thermal conductivity of 20%, and a glass transition temperature value of 25%, when compared to a neat epoxy composite.  相似文献   

18.
Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 °C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs–epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.  相似文献   

19.
An aluminosilicate glass matrix composite material reinforced by randomly oriented SiC-based (Tyranno) chopped fibres was fabricated. Slurry dipping and hot-pressing techniques were used to prepare dense composites containing 45 vol% fibres uniformly dispersed in the glass matrix. The mechanical properties and fracture mechanisms of the composite under flexion and compression loading were studied. In flexure, the composite showed higher modulus and strength than the unreinforced glass. However, in compression, the strength of the composite was lower than that of the monolithic glass. Considering the potential application of the material at high temperatures, the thermal aging behaviour of the composite in air at temperatures between 500 and 700°C was investigated. The composite retained its room-temperature compressive strength after exposure for 26 h at 500°C. The variation of compressive strength measured after exposures at higher temperatures was ascribed to mechanisms of fibre/matrix interface oxidation and to the softening of the glass matrix.  相似文献   

20.
Titanium carbide ceramic is a good potential material used in high temperature environment for its good strength, erosion resistance and thermal stability. Unfortunately, the low thermal shock resistance and low fracture toughness are the well-known impediments to its application as high temperature structure components. In order to extend the application of TiC ceramics at high temperature, 20 vol.% short carbon fiber was added into TiC matrix to improve the thermomechanical properties. With the incorporation of carbon fiber, the thermal expansion coefficient of TiC composites was decreased and the thermal conductivity was increased slightly below 900 °C. The flexural strength was improved from 471 MPa for monolithic TiC to 593 MPa for TiC composites, and the strengthening effect of carbon fiber became more prominent at high temperatures. The addition of fiber decreased the elastic modulus of TiC composite. The elastic modulus of the composite decreased with increasing temperature. The improvement of high temperature strength and thermal conductivity and the decrease of thermal expansion will benefit the application of TiC composites in high temperature environment where the temperature usually varies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号