首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlations for convective heat transfer coefficients are reported for two-phase flow of nitrogen and hydrogen under low mass and heat flux conditions. The range of flowrates, heat flux and tube diameter are representative of thermodynamic vent systems (TVSs) planned for propellant tank pressure control in spacecraft operating over long durations in microgravity environments. Experiments were conducted in normal gravity with a 1.5° upflow configuration. The Nusselt number exhibits peak values near transition from laminar to turbulent flow based on the vapor Reynolds number. This transition closely coincides with a flow pattern transition from plug to slug flow. The Nusselt number was correlated using components of the Martinelli parameter and a liquid-only Froude number. Separate correlating equations were fitted to the laminar liquid/laminar vapor and laminar liquid/turbulent vapor flow data. The correlations give root-mean-squared (rms) prediction errors within 15%.  相似文献   

2.
Cryogenic heat pipe for cooling high temperature superconductors   总被引:1,自引:0,他引:1  
The research in this paper investigates a consumable-free method of operating a high temperature superconducting (HTS) coil in space. The HTS wire resides inside a cryogenic heat pipe which is used for isothermalization. This paper presents the design, implementation, and testing of a cryogenic heat pipe for cooling high temperature superconductors. As a proof-of-concept, an 86 cm long straight heat pipe was constructed and enclosed two straight lengths of HTS wire. The working fluid, at saturation condition, maintains a constant temperature below the HTS wire critical temperature. Testing of the heat pipe in a vacuum chamber was conducted to verify the drop in HTS resistance correlating to the wire operating in a superconducting state.  相似文献   

3.
A cryogenic loop heat pipe (CLHP) has been developed for future aerospace applications at the Technical Institute of Physics and Chemistry (TIPC). It has been demonstrated that this CLHP, when placed horizontally, can operate in liquid-nitrogen temperature range and have a heat transfer capability of up to 12 W with proper working fluid inventory. This paper presents some particular characteristics of the CLHP when the compensation chamber is half-filled with liquid-phase working fluid before startup. The device has been tested at different orientations using nitrogen as the working fluid in order to compare its thermal behavior, specially related to the heat transfer capability, the operation temperature and the thermal resistance, as well as to investigate its operational characteristics under power level as low as 1 W. Tests were performed for the CLHP at horizontal position and with the liquid line 3.4 and 6.4 cm below the vapor line, respectively. The experimental results show the operationability of the CLHP tested at three orientations and tests with the liquid line 6.4 cm below the vapor line show lower operation temperatures and higher heat transfer capability.  相似文献   

4.
A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd’s correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN).The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.  相似文献   

5.
G. L. Mills   《低温学》2001,41(11-12)
The Low Temperature Microgravity Physics Facility (LTMPF) is a reusable, cryogenic facility that will accommodate a series of low temperature experiments to be conducted at the International Space Station. The facility will use a He II cryostat to cool the instruments. Some configurations of the science instruments in the cryostat will require an enhanced thermal link between the He II bath and parts of the instruments. Such an enhanced link can be made with plumbing filled with He II. This paper reports the results of analysis that was performed using the BATC proprietary helium flow software called SUPERFLO, on four different concepts for this link. The four concepts analyzed were: a simple tube with the heated end closed, a closed end tube with a porous plug at its entrance, a closed end tube filled with capillary tubes, and a porous plug driven flow loop. It was found that the concepts that used a porous plug were more robust since they were much less prone to boiling. This is due to the low gravity which causes all of the liquid in helium tank and plumbing to be very close to saturated conditions unless a porous plug is used to create a thermomechanical pressure. The effects of varying system parameters such as a acceleration, heat flux, pore size and tube size were also investigated and the results are reported.  相似文献   

6.
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, a significant heat leak source. The gradual accumulation of thermal energy within a representative capillary LAD during long-term storage periods (up to 210 days) on the Lunar surface is the main issue addressed. The ongoing program consists of experimental and analytical facets that include: (a) thermal modeling of LAD interior temperatures, (b) computational fluid dynamics (CFD) analyses to define bulk liquid conditions surrounding the LAD, (c) testing and analyses of condensation conditioning techniques for stabilizing LAD liquid retention, and (d) low-cost fluid systems thermal integration testing.  相似文献   

7.
A. Ravex  D. Feger  L. Duband   《低温学》1999,39(12):997
The thermal connection between a cryocooler cold tip and any object to be cooled (the thermal load) is very often a technical challenge. The allowed mechanical load on the cooler cold finger is generally strongly restricted. It is therefore difficult to design a mechanically anchored thermal link with low induced mechanical load and high thermal conductance. The proposed heat link concept is based on an evaporation/condensation process between the cooler cold tip and the thermal load.  相似文献   

8.
M.M. Shah 《低温学》1984,24(5):231-236
Data from eleven sources for nitrogen, neon, helium, and argon boiling in horizontal and vertical tubes were compared with the correlations of Shah and Klimenko as well as the superposition correlation of Rohsenow. Best agreement was found with the Shah correlation which agrees with nine of the data sets. Each of the other two correlations gives satisfactory agreement with only four of the twelve data sets. The results of data analysis are presented and discussed.  相似文献   

9.
设计了一套以乙烷作为工质,使用微通道冷凝器的低温回路热管原理样机,并对样机的降温过程、传热性能以及再启动特性进行了实验研究。结果表明:在5 W的驱动功率下该低温回路热管可实现快速降温,在降温过程中通过增大蒸发器的加热功率可以加速回路热管的降温;该样机可以在200 K时能够稳定传输50 W的热量,并且随着加热功率的增大,回路热管的热阻不断减小;在回路热管停止工作后,重新施加热量,该样机仍能够正常启动;该样机在本实验中的最大传热功率为54W,此时的热阻为0.46 K/W。  相似文献   

10.
乙烷温区低温环路热管设计与实验   总被引:1,自引:0,他引:1  
为了研究低温环路热管在乙烷温区的启动及运行特征,通过自行设计的样机进行了实验.实验表明,在0.7W的驱动功率下,低温环路热管可顺利实现降温启动;运行时,可传递12W的冷量,并且在9W时,传热热阻最小,为1.14 K/W.  相似文献   

11.
深冷环路热管(CLHP)在正常工作之前,整个回路内工质处于超临界状态.通过对毛细芯在液体工质中良好的浸润,保证主蒸发器顺利启动.研究了从储气室位置、副蒸发器功率以及充装压力等影响超临界启动的因素对CLHP超临界启动过程的影响.结果表明:储气室的两种接入位置均能实现超临界启动过程;漏热量一定时,为了使主蒸发器达到启动条件,副蒸发器存在一个最小启动功率,且副蒸发器功率越大主蒸发器降温越迅速;对于回路结构一定的CLHP,当副蒸发器功率一定时,其存在一个最佳充装压力,在该充装条件下能使得启动过程最为迅速.  相似文献   

12.
J. Bartlett 《低温学》2010,50(9):647-652
A magnetoresistive heat switch has been developed to improve the performance of our flight-worthy cryogen-free ADR. We have characterised the switch’s thermal conductivity in the temperature range 0.3-4 K under an applied magnetic field of 1.8 T for two tungsten samples of different purity. The results are discussed relating to the key aspects of semi-classical magnetoresistance theory. We show that crystal purity has a strong effect on switch performance and magnetoresistive effect. Our findings are verified by comparison to results obtained by other authors. The measured switching ratio for our best sample is 1.75 × 104 at 1.5 K and 1.51 × 104 at 4.26 K. The lattice conductivity remains dominated by the electronic conductivity in the investigated range of temperatures under an applied magnetic field of 1.8 T. In order for the lattice conductivity to dominate a purity of >99.999% would be required.  相似文献   

13.
Thermal finite element (FE) models, of low thermal conductance struts which are required to provide support for the low temperature components of the Herschel Space Observatory, have been validated by measurements at temperatures below 20 K. The Herschel Space Observatory structure is introduced. FE modelling of two designs of support strut is briefly discussed and the final designs presented. Validation of the design models was made in two experiments. The first of these provided specific thermal conductivity data for component CFRP materials, whose composition was initially designed on the basis of data available in the literature. The second experiment was performed to confirm the thermal conductance (Q′/ΔT), of the completed struts. The validation test rigs are described together with details of the experimental methods employed. Values of conductance were at the level of 5 × 10−5 W/K at a mean temperature of 6 K. The measured data are presented and discussed with reference to the thermal models. Sources of measurement inaccuracy, are also discussed.  相似文献   

14.
The pulsating heat pipe (PHP) is a potential alternative to highly conductive metals such as copper for long distance heat transfer. Effective thermal conductivity and heat transfer capacity of a PHP are two of the most critical factors for practical applications. In this paper, a helium based PHP, which consists of 48 parallel tubing sections, was developed. The lengths of the evaporator, adiabatic and condenser sections are 50 mm, 100 mm and 50 mm respectively. The condenser section was thermally anchored to a Gifford-McMahon cryocooler (GM cryocooler) with a cooling capacity of 1.5 W at 4.2 K. A maximum effective thermal conductivity of 12330 W/m∙K was obtained when 1.1 W heat was applied to the evaporator section at a fill ratio of 70.5%. With the same geometric parameters and operational parameters, the effect of the number of turns on the heat transfer performance was figured out by comparing the 48-turn PHP with an 8-turn PHP. The results show that the temperature difference between the evaporator and condenser sections of the 48-turn PHP is much smaller than that of the 8-turn PHP. The dry-out temperature response, effective thermal conductivity and heat transfer capacity of them are obtained and analyzed. Furthermore, two configurations of the 48-turn PHP, a parallel configuration and a series configuration, are defined. An optimum configuration is proposed and makes a reference to the design of a cryogenic PHP for applications.  相似文献   

15.
16.
Neon gas-gap heat switch   总被引:1,自引:0,他引:1  
A self-contained neon gas-gap heat switch featuring an internal charcoal adsorption pump has been developed and tested. This heat switch can be used with cold base temperature ranging from 17 K to 40 K offering an extension to sorption based helium gas-gap heat switch limited to below 20 K. For this prototype, an ON conductance about 74 mW/K and an OFF resistance about 3000 K/W were obtained, giving an ON/OFF conductance ratio about 220 at 20 K in agreement with calculations obtained from a simple model. These characteristics can be further optimized working on the geometry.  相似文献   

17.
基于热流分析软件SINDA/FLUINT,对低温回路热管进行了仿真模型分析,得到了它的工作温度、漏热、压降等随热负载的变化关系。将计算结果与实验进行对比,在一定的热负载范围内,仿真结果与实验结果吻合,验证了仿真模型的正确性。通过分析模型的计算结果,可为以后低温回路热管的设计和实验提供参考。  相似文献   

18.
给出了液氮温区重力辅助深冷回路热管结构设计方案,建立了实验系统,对其启动特性和工作性能进行了实验研究.深冷回路热管以高纯氮作为工作液体,工作温区为90 K~126 K.实验结果表明,深冷回路热管能在重力作用下快速启动,在气体管线高于液体管线20 mm的情况下,最大可传送的功率为11W.  相似文献   

19.
We have been developing cryogenic readout integrate circuits (ROICs) for high impedance submillimeter and far-infrared detectors: Our ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. We designed ROICs consisting of analog readouts and digital circuits for 32-element SIS photon detectors fabricated in RIKEN. The analog readout is ac-coupled capacitive transimpedance amplifier (CTIA), which is composed of the two-stage amplifier. Some initial test results of the ac-coupled CTIA gave us the following performance; open loop gain of >740, power consumption ≈1.4 μW. The input referred noise is ≈4 μV/ at 1 Hz. These results suggest that low power and high sensitive cryogenic readout electronics are successfully developed for high impedance detectors.  相似文献   

20.
Jisung Lee 《低温学》2010,50(5):352-358
Thermosiphon is an efficient heat transfer device by utilizing latent heat of fluid at liquid-vapor phase change. One of the disadvantages of thermosiphon, however, is that the operational temperature range is fundamentally limited from the critical point to the triple point of the working fluid to maintain two phase state. Nitrogen (N2) and tetrafluoromethane (CF4) were selected as the mixed working fluid to widen their original operational temperature range. Thermodynamic behavior of mixture and its effect on the cool-down time were investigated. A simple calculation model was proposed to estimate the cool-down time of the thermosiphon evaporator prior to experiments. The calculated results agreed well with the experimental results within 5% error. The cool-down time reduction was not achieved by mixing two components at once due to the separation of mixture. One idea to avoid this problem was suggested in this paper where the estimated cool-down time was reduced 17.8% compared to pure N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号