首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vibrations of the cold finger of a low-vibration helium pulse-tube cryostat are measured from 1 Hz to 20 kHz using an optical interferometer specially designed to measure small amplitude vibrations at high frequencies in the presence of large vibrations at lower frequencies. While the vibrational amplitude is dominated by the contribution at the fundamental compressor frequency of 1.4 Hz, the pulse tube contributes mechanical noise at frequencies up to 15 kHz, where the spectral density is measured to be 4 × 10−12 m/Hz1/2. Root-mean-squared vibration amplitudes of 5.2 μm and 3 μm are measured along perpendicular axes in the horizontal plane, and 1.0 μm in the vertical direction. The effect of a suspended sample holder for the purpose of attenuating high-frequency vibrations is evaluated. Finally, the cryostat is shown to be considerably noisier than typical laboratory floors.  相似文献   

2.
This paper introduces a new vibration free cryostat cooled by liquid helium and a 4 K pulse tube cryocooler. The cryogenic device mounts on the sample cooling station which is cooled by liquid helium. The boil off helium is recondensed by the pulse tube cryocooler, thus the cryostat maintains zero boil off. There is no mechanical contact between the cryogenic part of the cryocooler and the sample cooling station. A bellows is used to isolate the vibration which could transfer from the cryocooler flange to the cryostat flange at the room temperature. Any vibrations generated by the operation of the cryocooler are almost entirely isolated from the cryogenic device. The cryostat provides a cooling capacity of 0.65 W at 4.21 K on the sample cooling station while maintaining a vapor pressure of 102 kPa. The sample cooling station has a very stable temperature with oscillations of less than ±3 mK during all the operations. A cryogenic microwave oscillator has been successfully cooled and operated with the cryostat.  相似文献   

3.
A 1 K closed-cycle cryostat has been developed to provide continuous cooling to a photon detector below 2 K. A two-stage 4 K pulse tube cryocooler is used to liquefy evacuated vapor from a 1 K pumping port to form a closed-cycle refrigeration loop. A 1 K instrumentation chamber, attached to the 1 K cooling station, is designed to operate with helium inside and provide more uniform cooling. The design of the cryostat has no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station resulting in almost no vibration transfer to instrumentation chamber. The cryostat can reach a no-load temperature of 1.62 K and provide 250 mW cooling power at 1.84 K.  相似文献   

4.
The cold head of a pulse tube refrigerator does not contain moving parts, therefore, is traditionally thought of as producing low vibration and having extended lifespan. Thus, such cryogenic engines are especially attractive for use in vibration-sensitive instrumentation, such as scanning electron microscopes, superconductive quantum interference devices, etc. However, even relatively low-level vibration of a pulse tube, resulting from oscillation of a gas pressure, may be excessive for the above vibration-sensitive OEM instrumentation. By making use of the finite element analysis and the full-scale experimentation, the authors identify the sources of a pulse tube vibration.  相似文献   

5.
The increase in use of “dry-cooling” technology, which is slowly replacing the LN2 cooling in vibration-sensitive instrumentation, such as scanning electronic microscopes and superconductive quantum interference devices, motivates the further quieting of the attached cryogenic refrigerators. A pulse tube refrigerator produces some relatively low vibration due to the oscillating gas pressure. However small, this may be excessive for the above mentioned vibration-sensitive instrumentation. Therefore, a customized vibration attenuation interface is proposed, which can effectively control this detrimental vibration. The authors propose a thermally conductive, passive vibration isolator for mounting a vibration-sensitive payload on the cold tip of a refrigerator. An optimal design is reached by incorporating an analytical model and appropriate experimentation. The authors demonstrate the capabilities of a first prototype vibration isolator in attenuating a pulse tube’s vibration down to the background level.  相似文献   

6.
We describe a liquid helium cryostat, developed to cool SQUID-based receivers in low field MRI systems. The cryostat has a 4 L liquid helium capacity, a hold time of over 3 days and accommodates 10 cm diameter receiver coils. New vacuum insulation methods reduce the noise level by at least an order of magnitude compared to existing commercial designs. The minimum detectable field at 425 kHz, with a 5 cm diameter circular coil, was estimated to be 0.018 fT/Hz1/2 from Q-factor measurements and 0.035 fT/Hz1/2 by direct measurement with a SQUID amplifier. Further measurements indicated that most of this field noise probably originates with dielectric losses in the cryostat’s fibreglass shells.  相似文献   

7.
S Janos  F Nydegger 《低温学》2003,43(8):463-464
A vacuum tight high-pin density feedthrough for use in superfluid helium has been developed. The design and construction based on commercially available Framatome connectors is described.  相似文献   

8.
M. Dietrich  G. Thummes 《低温学》2010,50(4):281-286
A two-stage Stirling-type U-shape pulse tube cryocooler driven by a 10 kW-class linear compressor was designed, built and tested. A special feature of the cold head is the absence of a heat exchanger at the cold end of the first-stage, since the intended application requires no cooling power at this intermediate temperature. Simulations where done using Sage-software to find optimum operating conditions and cold head geometry. Flow-impedance matching was required to connect the compressor designed for 60 Hz operation to the 40 Hz cold head. A cooling power of 12.9 W at 25 K with an electrical input power of 4.6 kW has been achieved up to now. The lowest temperature reached is 13.7 K.  相似文献   

9.
Following its important cryogenics heritage for the European Space industry for both Ariane launcher and Orbital programs, Air Liquide - Advanced Technology Division (AL/DTA) is proposing different pulse tube cryocoolers all over the temperature range to answer the needs of earth observation and scientific missions.This paper presents recent performance improvement of the large heat lift 40-80 K pulse tube cooler (LPTC). Four units have been manufactured and tested. Three units are dedicated to lifetime testing in the framework of French Military Space Program (under CNES contract) and Meteosat Third Generation program (ESA contract). The batch performances are described and the product maturity is discussed in this paper.To lower the temperature range and to complete our cryogenic chain, we developed in partnership with CEA/INAC/SBT, a heat intercepted 20-50 K pulse tube cryocooler. This cooler has been developed in the framework of an ESA contract (ESA/ESTEC No 20497/0/NL/PA-20-50 K pulse tube cooler). A development phase has been performed to test and optimize different cold head architectures to reach the 300 mW@20 K specification. A no-load temperature of 12.5 K has been demonstrated on breadboard model. The outputs of the trade-off, the resulting design and the performances are described.In complement to the dilution cooler similar to the one developed for the PLANCK mission, those two pulse tube coolers are potential candidates for a very low temperature cooling chain. By optimizing the capabilities of the 20 K stage for low temperature operation (no-load in the range of 8 K) the coupling of the three independent stages becomes possible.  相似文献   

10.
S. Grohmann 《低温学》2009,49(8):413-420
The Karlsruhe Tritium Neutrino Experiment (KATRIN) will measure the mass of the electron antineutrino with a sensitivity of , based on the precise measurement of the T2β spectrum in a region close to the endpoint. This requires a T2 source, which can provide 1011β decay electrons per second. The KATRIN source cryostat consists in its centre of a 10 m long beam tube of 90 mm inner diameter, operated at 30 K. Molecular T2 is injected in the beam tube through a central injection chamber and pumped at either tube end. The T2 density profile must have a stability of 10-3 in order to limit the systematic errors, yielding stringent requirements on the beam tube temperature homogeneity and stability of . This shall be achieved with a design, where the thermal radiation from the vacuum pumps is almost entirely absorbed by LN2 and He heat exchangers on the pump ports. The beam tube itself is cooled with two-phase tubes that are part of a Ne thermosiphon. After describing the thermal environment of the beam tube, the design parameters and the operational limits of the thermosiphon will be discussed. This is followed by a detailed analysis of its dynamic behaviour, based on experimental data taken in the primary He cooling system. A “tailor-made” Ne condenser design is presented, enabling the suppression of the primary He temperature variations by two orders of magnitude, from c. to below .  相似文献   

11.
A number of technological advances required to store and maintain normal-boiling-point and densified cryogenic liquids, including liquid hydrogen, under zero boil-off conditions in-space, for long periods of time, have been developed. These technologies include (1) thermally optimized compact cryogen storage systems that reduce environmental heat leak to the lowest-temperature cryogen, which minimizes cryocooler size and input power, and (2) actively-cooled shields that surround the storage systems and intercept heat leak. The processes and tools used to develop these technologies are discussed. A zero boil-off liquid hydrogen storage system technology demonstrator for validating the actively-cooled shield technology is presented.  相似文献   

12.
C. Regier  J. Pieper 《低温学》2010,50(2):118-125
This work includes the creation and validation of a computer model of a liquid helium cryostat located at the Canadian Light Source (CLS) in Saskatoon, Canada. This cryostat contains a superconducting radio frequency (RF) cavity, and requires careful pressure and level modulation to ensure proper RF control. A detailed mathematical model of the cryostat is generated based on gas and liquid mass balances for a boiling vessel, along with pressure-volume-temperature relations. The model is discretized and solved, and model results are compared with experimental data taken from the actual cryostat at the CLS to determine the accuracy of the simulation. The model is found to reasonably represent the cryostat at the CLS from a process perspective.  相似文献   

13.
Magnetic noise of a two-stage pulse tube cryocooler (PT) was measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS Double Relaxation Oscillation SQUID (DROS) first-order planar gradiometer. The magnetometer was installed in a dewar made of aluminum at 12 cm distance from a section containing magnetic regenerative materials of the second pulse tube. The magnetic noise spectrum showed a clear peak at 1.8 Hz, which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise registered a peak, during the cooling down process, when the second cold-stage temperature was around 12 K, which is well correlated with the 1.8 Hz variation of the temperature of the second cold stage. Hence, we attributed the main source of this magnetic noise to the temperature variation of the magnetic moments resulting from magnetic regenerative materials, Er3Ni and HoCu2, in the presence of background static magnetic fields. We have also pointed out that the superconducting magnetic shield of lead sheets reduced the low frequency magnetic noise generated from the magnetic regenerative materials. With this arrangement, the magnetic noise amplitude measured with the LTS DROS gradiometer, mounted at 7 cm horizontal distance from the magnetic regenerative materials, in the optimum condition, was lower than 500 pT peak-to-peak, whereas the noise level without lead shielding was higher than the dynamic range of DROS instrumentations which was around .  相似文献   

14.
The combination of high magnetic field and ultra-low temperatures has proved to be indispensable for a broad range of condensed matter physics experiments. However problems with the global helium supply have raised significant concern about affordability of conventional cryogenic equipment. The latest developments in cryo-cooler technology offer a new generation of cryogenic systems in which the cryogen consumption can be significantly reduced and in some cases completely eliminated. We have demonstrated a new high magnetic field - ultra-low temperature neutron scattering sample environment system based on re-condensing technology. In our tests we have shown that the 9 T superconducting magnet, built for the ISIS facility, can be run with a dilution refrigerator insert in continuous zero boil-off regime without any additional cooling.  相似文献   

15.
This paper describes helium liquefaction using a commercial cryocooler with 1.5 W cooling power at 4.2 K (Sumitomo model RDK415D with compressor CSW-71D, consuming 6.5 kW electrical power), equipped with heat exchangers for precooling the incoming gas. No additional cooling power of cryoliquids or additional Joule-Thomson stages were utilized. Measurements of the pressure dependence of the liquefaction rate were performed. A maximum value of 83.9 g/h was obtained for 2.25 bar stabilized input pressure. Including the time needed to cool the liquefied helium to 4.2 K at 1 bar after filling the bottle connected to the cold head, and correcting for heat screen influences, this results in a net liquefaction rate of 67.7 g/h. Maintaining a pressure close to 1 bar above the bath during liquefaction, a rate of 55.7 g/h was obtained. The simple design enables many applications of the apparatus.  相似文献   

16.
Various research fields require large and complex instruments containing detectors operating at millikelvin temperatures. The materials and techniques traditionally used in cryogenics are often unsuitable for the demanding requirements of such instruments. We describe the thermal design and performance of the 1-K and millikelvin systems of the SCUBA-2 instrument. This is an astronomical “camera” operating at wavelengths of 450 and 850 μm. It is the largest and most complex instrument ever built for sub-mm astronomy, and the first to use a cryogen-free dilution refrigerator. The design consists of a mix of traditional techniques (but used in demanding situations) as well as novel elements. The thermal performance has been stable and very successful, and we hope that the details described here will be useful to the designers of future large instruments.  相似文献   

17.
Y.L. He  Y.B. Tao  F. Gao 《低温学》2009,49(2):84-93
In present paper, a new modeling approach for the performance of pulse tube refrigerator is proposed. The new approach combines one-dimensional and two-dimensional models (1-D and 2-DCC model) together, and can be used to simulate the fluid flow and heat transfer processes of the basic type, orifice type and double-inlet type pulse tube refrigerators (PTRs). With the present model, the complicated fluid flow and heat transfer characteristics in the PTR system can be efficiently depicted and the computational time can be greatly reduced. Then based on the approach, the distribution characteristics of the flow and temperature fields of the three types of PTR are numerically analyzed. The complicated fluid flow and heat transfer phenomena in PTR, such as DC flow, velocity and temperature annular effects are presented vividly. The numerical results show that the 1-D and 2-DCC model is reliable and practical, which can be used to explore the physical mechanism of the thermodynamic processes of the PTR system and optimize the design of the PTR system and its components.  相似文献   

18.
19.
High-power Stirling-type pulse tube coolers (PTCs) are promising candidates for cooling HTS devices and gas liquefaction or separation applications. Nevertheless, till now most high-power Stirling-type PTCs are not able to reach a refrigeration temperature below 35 K. Here, a high-power two-stage Stirling-type PTC was designed, manufactured and experimentally investigated. In order to realize a convenient coupling with a thermal load, U-shape configuration is adopted in both stages, which makes it more challenging to distribute the gas flow and reduce dead volume in the cold end heat exchanger. By optimizing operating conditions, flow straightener, and double-inlet opening, the cooler has reached no-load refrigeration temperatures of 29.6 K and 27.1 K at 55 Hz and 40 Hz, respectively. Furthermore, the cooler is able to provide cooling powers of 50 W at 45.6 K and 100 W at 59.3 K when input pV powers are 4.77 kW and 4.59 kW, respectively.  相似文献   

20.
G. Sou  M. Redon  D. Prêle  M. Piat 《低温学》2009,49(11):681-685
This paper presents an ultra low noise instrumentation based on cryogenic electronic integrated circuits (ASICs: Application Specific Integrated Circuits). We have designed successively two ASICs in standard BiCMOS SiGe 0.35 μm technology that have proved to be operating at cryogenic temperatures. The main functions of these circuits are the readout and the multiplexing of TES/SQUID arrays. We report the cryogenic operation of a first ASIC version dedicated to the readout of a 2 × 4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low white noise (0.2 nV/sqrtHz) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented. We finally report on the development of a second version of this circuit to readout a 3 × 8 detectors array with improved noise performances and upgraded functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号