首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to quantify dosimetric differences if modern sophisticated voxel phantoms were used in the dosimetry system DS02 rather than the mathematical phantoms. The mathematical models (ADAM and EVA) and voxel phantoms (REX and REGINA) developed in Germany allow a useful comparison as they are very close in body weight, body height and organ masses. In this study, organ doses are calculated with published fluence-to-absorbed-dose conversion coefficients derived from those two model sets for unidirectional plane beam irradiation geometries, with DS02 photon energy spectra at various distances from the hypocentre in Hiroshima. Results showed that organ doses from mathematical models generally agree well with those from voxel phantoms except for a few organs at lateral irradiation geometries and eye lenses at antero-posterior irradiation, even though there were significant differences between the two phantom sets and various uncertainties in dose calculations.  相似文献   

2.
The A bomb dosimetry system (DS) calculates each survivor's organ doses. It does this by calculating the angular fluences incident on each survivor. These are used with humanoid phantom shielding calculations to estimate organ doses in 15 organs, 3-sized phantoms, 2 sexes and 2 postures at any orientation or distance to the bomb. The DS has been re-used and updated several times. Currently, efforts are being considered to include shielding for additional organs by adding additional phantoms. The DS has gone through a series of upgrades referred to as: DS84, DS86, DS86R, DS93, DS02. DS86 and DS02 were approved and installed at Radiation Effects Research Foundation. The system uses free-field energy-angular fluence from a discrete ordinate calculation coupled with Monte Carlo adjoint-shielding histories. This paper briefly discusses the adjoint Monte Carlo; combinatorial shield geometry for the phantom, house, factory, and terrain; modifications to use fictitious scattering in voxel phantoms; the adjoint source energy, angle and location distribution; 'leakage histories' and their optimisation for dose or fluence; doubly differential (energy-angle) coupling for single-, double-, or triple-shielding coupling; output of various components of dose and energy-angular fluences; survivor-specific inputs; organ dose uncertainty; and testing, benchmarking and extended applications. Also, approaches to add additional organ-shielding calculations to DS02 are discussed.  相似文献   

3.
The computational phantoms used in dosimetry system DS86 and re-used in DS02 were derived from models and methods developed at Oak Ridge National Laboratories (ORNL) in the US, but referred to Japanese anthropometric data for the Japanese population of 1945, from studies conducted at the Japanese National Institute of Radiological Sciences and other sources. The phantoms developed for DS86 were limited to three hermaphroditic models: infant, child and adult. After comparing data from Japanese and Western populations, phantoms were adapted from the pre-existing ORNL series, adjusting some organs in the adult phantom to reflect differences between Japanese and Western data, but not in the infant and child phantoms. To develop a new and larger series of more age- and sex-specific models, it appears necessary to rely on the original Japanese data and values derived from them, which can directly provide population-average body dimensions for various ages. Those data were re-analysed in conjunction with other Asian data for an Asian Reference Man model, providing a rather complete table of organ weights that could be used to scale organs for growth during childhood and adolescence. Although the resulting organ volumes might have some inaccuracies in relation to true population-average values, this is a minor concern because in the DS02 context organ size per se is less important than the correct body size and correct placement of the organ in the body.  相似文献   

4.
The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.  相似文献   

5.
Dose conversions were studied for dosimetry of atomic bomb survivors based upon electron spin resonance (ESR) measurements of tooth enamel. Previously analysed data had clarified that the tooth enamel dose could be much larger than other organ doses from a low-energy photon exposure. The radiation doses to other organs or whole-body doses, however, are assumed to be near the tooth enamel dose for photon energies which are dominant in the leakage spectrum of the Hiroshima atomic bomb assumed in DS02. In addition, the thyroid can be a candidate for a surrogate organ in cases where the tooth enamel dose is not available in organ dosimetry. This paper also suggests the application of new Japanese voxel phantoms to derive tooth enamel doses by numerical analyses.  相似文献   

6.
Currently, most analyses of the A-bomb survivors' solid tumour and leukaemia data are based on a constant neutron relative biological effectiveness (RBE) value of 10 that is applied to all survivors, independent of their distance to the hypocentre at the time of bombing. The results of these analyses are then used as a major basis for current risk estimates suggested by the International Commission on Radiological Protection (ICRP) for use in international safety guidelines. It is shown here that (i) a constant value of 10 is not consistent with weighting factors recommended by the ICRP for neutrons and (ii) it does not account for the hardening of the neutron spectra in Hiroshima and Nagasaki, which takes place with increasing distance from the hypocentres. The purpose of this paper is to present new RBE values for the neutrons, calculated as a function of distance from the hypocentres for both cities that are consistent with the ICRP60 neutron weighting factor. If based on neutron spectra from the DS86 dosimetry system, these calculations suggest values of about 31 at 1000 m and 23 at 2000 m ground range in Hiroshima, while the corresponding values for Nagasaki are 24 and 22. If the neutron weighting factor that is consistent with ICRP92 is used, the corresponding values are about 23 and 21 for Hiroshima and 21 and 20 for Nagasaki, respectively. It is concluded that the current risk estimates will be subject to some changes in view of the changed RBE values. This conclusion does not change significantly if the new doses from the Dosimetry System DS02 are used.  相似文献   

7.
It is popularly known that people who entered into the ground-zero area shortly after the atomic bombings in Hiroshima and Nagasaki suffered from various syndromes similar to acute radiation effects. External exposures from neutron-induced radionuclides in soil have recently been reassessed based on DS02 calculations as functions of both distance from the hypocentres and elapsed time after the explosions. Significant exposure due to induced radiation can be determined for those who entered the area within 1000 m from the hypocentres shortly after the bombing. Although it was impossible to track the action of each of the survivors over the days or weeks following the bombings in order to make reliable dose estimates for their exposures to soil activation or fallout, four individuals among those early entrants were investigated here to describe useful information of what happened shortly after the bombing.  相似文献   

8.
Improved radiation protection of humans requires a better understanding of the mechanisms of radiation action and accurate estimates of radiation risk for both internal and external radiations. The Japanese atomic bomb survivors represent one of the most important sources of human data on the late carcinogenic effects of ionising radiations. The present study was undertaken to investigate whether it would be possible to use hospital radiotherapy/radiobiology equipment to mimic the spectra encountered in Hiroshima and Nagasaki. The estimated total gamma ray fluence spectra (including both prompt and delayed photons) at both Hiroshima and Nagasaki, for distances of 500, 1000, 1500 and 2000 m have been evaluated using DS86 data and previously unpublished information for delayed gamma radiations which constitute the major contribution to survivor doses. Monte Carlo (EGS4) simulations were performed to transport these photons through the body in order to investigate the variation in electron spectra for various body organs. The electron spectra obtained for these fluences at, for example, the colon, have been matched with combinations of electron spectra produced by linear accelerators to within 5% SD. These will, for the first time, enable a direct link to be made between radiobiological studies (for example, on mammography spectra) and the epidemiological data from Japan, which currently underpin radiation risk estimates.  相似文献   

9.
针对物流自动化分拣项目的系统设计,提出基于3DS MAX的3D动画仿真方法,以某烟草自动化分拣系统方案为例,阐述了利用3DS MAX作为系统3D仿真平台对系统设计进行3D仿真的过程。通过建立分拣系统数据模型与3D模型,利用3D动画技术、渲染技术进行系统3D仿真,为系统设计提供了可视化的展示与交流平台,并为项目可行性与可靠性提供可视化参考依据,此方法在企业同类项目中得到成功推广。  相似文献   

10.
The electron paramagnetic resonance (EPR, or electron spin resonance) method was used to measure CO??· radicals recorded in tooth enamel by exposure to atomic-bomb gamma rays. The EPR-estimated doses (i.e. ??Co gamma-ray equivalent dose) were generally in good correlation with cytogenetic data of the same survivors, whereas plots of EPR-estimated dose or cytogenetically estimated dose against DS02 doses turned out to scatter more widely. Because those survivors whose EPR doses were higher (or lower) than DS02 doses tended to show also higher (or lower) responses for cytogenetic responses, the apparent variation appears primarily due to problems in individual DS02 doses rather than the measurement errors associated with the EPR or cytogenetic technique. A part of the enamel samples were also used for evaluation of neutron doses by measuring ?1Ca/??Ca ratios using the accelerator mass spectrometry technique. The results for the measured ratios were on average ~85 % of the calculated ratios by DS02 (but within the 95 % confidence bounds of the simulated results), which lends support to DS02-derived neutron doses to the survivors.  相似文献   

11.
A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating   总被引:1,自引:0,他引:1  
Two thermal spraying techniques, namely, detonation gun spraying (DS) and low pressure plasma spraying (LPPS), were used to prepare different NiCrAlY coatings on a single crystal (SC) Ni-based superalloy. Microstructure, surface hardness, adhesion strength and high-temperature oxidation behavior of DS NiCrAlY coating and LPPS NiCrAlY coating were compared. The results showed that the two coatings in as-sprayed state had the same splat layer structure. Somewhat differently, oxidation reaction took place in DS process and Al2O3 sandwiched between the splats in DS NiCrAlY coating. It is found that the surface hardness of DS coatings are higher than those of LPPS coating. But the oxidation resistance of DS coating is relatively lower.  相似文献   

12.
根据OpenGL进行三维显示的处理过程和3DS文件中三维模型的数据组织结构,说明了如何从3DS文件得到OpenGL显示所需的数据。讨论了OpenGL显示三维物体时法线向量的作用,给出了一种高效的法线向量求解方法,该方法比现有方法的速度快一至两个数量级。最后讨论了如何利用3DS文件中的关键帧数据正确地显示带动画信息的模型。  相似文献   

13.
1.IntroductionAs a new type of structural materials based on the B2intermetallics,NiAl offers superior characteristics,suchas low density,high melting point and excellent oxida-tion resistance at high temperature[1].However,the poorfracture toughness at ambient temperature and low creepstrength at elevated temperature limit their applicationcurrently.Although the creep strength has been sig-nificantly improved by precipitation strengthening[2]orforming a particulate composite[3],and ductility…  相似文献   

14.
The purpose of this study was to investigate how the choice of the scanned region affects organ doses in CT. ImPACT CT Patient Dosimetry Calculator (version 1.0) was used to compute absorbed doses to eight organs of interest in medical radiation dosimetry. For 13 dosimetry data sets, the authors calculated the maximum organ dose (D(max)) as well as the corresponding organ dose for a scan with selected length D(L). These data permitted the relative dose (D(r) = D(L)/D(max)) to be determined for varying scan lengths. Computations were performed for a nominal X-ray tube current of 100 mA, a rotation time of 1 s and a CT pitch of 1. The authors also determined values of D(max)/CTDI(vol), where CTDI(vol) is obtained in a 32-cm diameter CT dosimetry phantom using the same radiographic techniques. For each organ, D(r) was independent of the type of scanner, and increased monotonically to unity with increasing scan length. Relative doses for a scan restricted to the organ length ranged from 0.65 D(max) for the bladder to 0.86 D(max) for the lungs. There was good correlation (r = 0.64) between relative organ dose and the corresponding organ length. At 120 kV, the lowest value of D(max)/CTDI(vol) was 1.23 for the breast and the highest was 2.22 for the thyroid. Varying the X-ray tube voltage between 100 and 130 kV results in changes in D(max)/CTDI(vol) of no more than 4 %. CT scans limited to the direct irradiation of an average-sized organ results in an absorbed dose of ~0.75 D(max).  相似文献   

15.
针对传统家具定制设计的不足,提出利用3DS MAX开发沙发定制设计系统.通过范例,使用3DS MAX在场景中创建模型,并用MAX Script编写用户界面,使用户通过界面控件对场景中的模型进行操作,实现了客户对沙发的款式、颜色和材质定制,并为其添加了空间、配套茶几,最后通过播放动画浏览定制效果.研究结果充分表明将3DS MAX及MAX Script应用于沙发定制设计系统的可行性,为家具定制设计系统的开发提供了新的工具.  相似文献   

16.
The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypocentres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypocentre while significantly underestimated for lateral positions relative to the hypocentre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately.  相似文献   

17.
In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.  相似文献   

18.
An analysis of doses to tooth enamel and to organs was carried out to develop a method that can predict the organ doses and the effective dose by electron spin resonance (ESR) dosimetry using tooth samples for external photon exposure. Absorbed dose to tooth enamel and organ doses were obtained by Monte Carlo calculations using the EGS4 code in combination with a mathematical human model with a newly defined teeth part. The calculations gave quantitative relations between tooth enamel dose and organ doses for some cases of external photon exposure. It was also found that tooth enamel dose depends more significantly on energy of incident photons than the other organ dose or the effective dose. The obtained data are to be useful for the assessment of individual dose in past exposure events by the ESR dosimetry using tooth enamel.  相似文献   

19.
Prediction of risks and therapeutic outcome in nuclear medicine largely rely on calculation of the absorbed dose. Absorbed dose specification is complex due to the wide variety of radiations emitted, non-uniform activity distribution, biokinetics, etc. Conventional organ absorbed dose estimates assumed that radioactivity is distributed uniformly throughout the organ. However, there have been dramatic improvements in dosimetry models that reflect the substructure of organs as well as tissue elements within them. These models rely on improved nuclear medicine imaging capabilities that facilitate determination of activity within voxels that represent tissue elements of approximately 0.2-1 cm(3). However, even these improved approaches assume that all cells within the tissue element receive the same dose. The tissue element may be comprised of a variety of cells having different radiosensitivities and different incorporated radioactivity. Furthermore, the extent to which non-uniform distributions of radioactivity within a small tissue element impact the absorbed dose distribution is strongly dependent on the number, type, and energy of the radiations emitted by the radionuclide. It is also necessary to know whether the dose to a given cell arises from radioactive decays within itself (self-dose) or decays in surrounding cells (cross-dose). Cellular response to self-dose can be considerably different than its response to cross-dose from the same radiopharmaceutical. Bystander effects can also play a role in the response. Evidence shows that even under conditions of 'uniform' distribution of radioactivity, a combination of organ dosimetry, voxel dosimetry and dosimetry at the cellular and multicellular levels can be required to predict response.  相似文献   

20.
There is a need to calculate specific absorbed fractions (SAFs) in voxel phantoms for internal dosimetry. For this purpose, an EGS4 user code for calculating SAFs using voxel phantoms was developed on the basis of an existing EGS4 user code for external dosimetry (UCPIXEL). In the developed code, the transport of photons, electrons and positrons in voxel phantoms can be simulated, particularly the transport simulations of secondary electrons in voxel phantoms. The evaluated SAFs for the GSF 'Child' voxel phantom using the developed code were found to be in good agreement with the GSF evaluated data. In addition, SAFs in adult voxel phantoms developed at JAERI were evaluated using the developed code and were compared with several published data. It was found that SAFs for organ self-absorption depend on the organ masses and would be affected by differences in the structure of the human body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号