首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells.  相似文献   

2.
With the rapid advances in single-molecule and live-cell imaging studies to investigate biological problems, the role of chemical probes to monitor reactions in a live cell has considerably increased. However, selective labeling of a target protein or a specific residue is highly challenging due to the high complexity of the biological system. In particular, biological macromolecules (such as proteins, DNA, or RNA) share many functional groups that potentially cross-react with exogenous chemical probes. Thus, there are high demands for perfect biocompatible reactions utilizing biologically unavailable chemistry. Metal-catalyzed reactions have been extensively investigated as synthetic methodology studies, including initial attempts in applying the chemistry in aqueous solutions in vitro or even in biological conditions. Herein, the latest developments and progress in metal-catalyzed bio-orthogonal reactions for biomolecule labeling are summarized.  相似文献   

3.
Lipids play critical roles in a litany of physiological and pathophysiological events, often through the regulation of protein function. These activities are generally difficult to characterize, however, because the membrane environment in which lipids operate is very complex. Moreover, lipids have a diverse range of biological functions, including the recruitment of proteins to membrane surfaces, actions as small-molecule ligands, and covalent protein modification through lipidation. Advancements in the development of bioorthogonal reactions have facilitated the study of lipid activities by providing the ability to selectively label probes bearing bioorthogonal tags within complex biological samples. In this Account, we discuss recent efforts to harness the beneficial properties of bioorthogonal labeling strategies in elucidating lipid function. Initially, we summarize strategies for the design and synthesis of lipid probes bearing bioorthogonal tags. This discussion includes issues to be considered when deciding where to incorporate the tag, particularly the presentation within a membrane environment. We then present examples of the application of these probes to the study of lipid activities, with a particular emphasis on the elucidation of protein-lipid binding interactions. One such application involves the development of lipid and membrane microarray analysis as a high-throughput platform for characterizing protein-binding interactions. Here we discuss separate strategies for binding analysis involving the immobilization of either whole liposomes or simplified isolated lipid structures. In addition, we present the different strategies that have been used to derivatize membrane surfaces via bioorthogonal reactions, either by using this chemistry to produce functionalized lipid scaffolds that can be incorporated into membranes or through direct modification of intact membrane surfaces. We then provide an overview of the development of lipid activity probes to label and identify proteins that bind to a particular lipid from complex biological samples. This process involves the strategy of activity-based proteomics, in which proteins are collectively labeled on the basis of function (in this case, ligand binding) rather than abundance. We summarize strategies for designing and applying lipid activity probes that allow for the selective labeling and characterization of protein targets. Additionally, we briefly comment on applications other than studying protein-lipid binding. These include the generation of new lipid structures with beneficial properties, labeling of tagged lipids in live cells for studies involving fluorescence imaging, elucidation of covalent protein lipidation, and identification of biosynthetic lipid intermediates. These applications illustrate the early phase of the promising field of applying bioorthogonal chemistry to the study of lipid function.  相似文献   

4.
Recently a number of nonnatural prenyl groups containing alkynes and azides have been developed as handles to perform click chemistry on proteins and peptides ending in the sequence “CAAX”, where C is a cysteine that becomes alkylated, A is an aliphatic amino acid and X is any amino acid. When such molecules are modified, a tag containing a prenyl analogue and the “CAAX box” sequence remains. Here we report the synthesis of an alkyne‐containing substrate comprised of only nine nonhydrogen atoms. This substrate was synthesized in six steps from 3‐methylbut‐2‐en‐1‐ol and has been enzymatically incorporated into both proteins and peptides by using protein farnesyltransferase. After prenylation the final three amino acids required for enzymatic recognition can be removed by using carboxypeptidase Y, leaving a single residue (the cysteine from the “CAAX box”) and the prenyl analogue as the only modifications. We also demonstrate that this small tag minimizes the impact of the modification on the solubility of the targeted protein. Hence, this new approach should be useful for applications in which the presence of a large tag hinders the modified protein’s solubility, reactivity, or utility.  相似文献   

5.
The challenging task of identifying and studying protein function has been greatly aided by labeling proteins with reporter groups. Here, we present a strategy that utilizes an enzyme that labels a four-residue sequence appended onto the C terminus of a protein, with an alkyne-containing substrate. By using a bio-orthogonal cycloaddition reaction, a fluorophore that carried an azide moiety was then covalently coupled to the alkyne appended on the protein. FRET was used to calculate a F?rster (R) distance of 40 A between the eGFP chromophore and the newly appended Texas Red fluorophore. This experimental value is in good agreement with the predicted R value determined by using molecular modeling. The small recognition tag, the high specificity of the enzyme, and the orthogonal nature of the derivatization reaction will make this approach highly useful in protein chemistry.  相似文献   

6.
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.  相似文献   

7.
Proteins are the workhorses of the cell, playing crucial roles in virtually every biological process. The revolutionary ability to visualize and monitor proteins in living systems, which is largely the result of the development of green fluorescence protein (GFP) and its derivatives, has dramatically expanded our understanding of protein dynamics and function. Still, GFPs are ill suited in many circumstances; one major drawback is their relatively large size, which can significantly perturb the functions of the native proteins to which they are fused. To bridge this gap, scientists working at the chemistry-biology interface have developed methods to install bioorthogonal functional groups into proteins in living cells. The bioorthogonal group is, by definition, a non-native and nonperturbing chemical group. But more importantly, the installed bioorthogonal handle is able to react with a probe bearing a complementary functionality in a highly selective fashion and with the cell operating in its physiological state. Although extensive efforts have been directed toward the development of bioorthogonal chemical reactions, introducing chemical functionalities into proteins in living systems remains an ongoing challenge. In this Account, we survey recent progress in this area, focusing on a genetic code expansion approach. In nature, a cell uses posttranslational modifications to append the necessary functional groups into proteins that are beyond those contained in the canonical 20 amino acids. Taking lessons from nature, scientists have chosen or engineered certain enzymes to modify target proteins with chemical handles. Alternatively, one can use the cell's translational machinery to genetically encode bioorthogonal functionalities, typically in the form of unnatural amino acids (UAAs), into proteins; this can be done in a residue-specific or a site-specific manner. For studying protein dynamics and function in living cells, site-specific modification by means of genetic code expansion is usually favored. A variety of UAAs bearing bioorthogonal groups as well as other functionalities have been genetically encoded into proteins of interest. Although this approach is well established in bacteria, tagging proteins in mammalian cells is challenging. A facile pyrrolysine-based system, which might potentially become the "one-stop shop" for protein modification in both prokaryotic and eukaryotic cells, has recently emerged. This technology can effectively introduce a series of bioorthogonal handles into proteins in mammalian cells for subsequent chemical conjugation with small-molecule probes. Moreover, the method may provide more precise protein labeling than GFP tagging. These advancements build the foundation for studying more complex cellular processes, such as the dynamics of important receptors on living mammalian cell surfaces.  相似文献   

8.
The major capsid protein VP1 of JC Polyomavirus assembles into pentamers that serve as a model for studying viral entry of this potentially severe human pathogen. Previously, labeling of viral proteins utilized large fusion proteins or non-specific amine- or cysteine-functionalization with fluorescent dyes. Imaging of these sterically hindered fusion proteins or heterogeneously labeled virions limits reproducibility and could prevent the detection of subtle trafficking phenomena. Here we advance the π-clamp-mediated cysteine conjugation for site-selective fluorescent labeling of VP1-pentamers. We demonstrate a one-step synthesis of a probe consisting of a bio-orthogonal click chemistry handle bridged to a perfluoro-biphenyl π-clamp reactive electrophile by a polyethylene glycol linker. We expand the scope of the π-clamp conjugation by demonstrating selective labeling of an internal, surface exposed loop in VP1. Thus, the π-clamp conjugation offers a general method to selectively bioconjugate tags-of-interest to viral proteins without impeding their ability to bind and enter cells.  相似文献   

9.
Chemical modifications of proteins are increasingly important in the development of protein drugs with fine-tuned properties. Regioselective modification, such as the chemoselective alkylation of an unpaired cysteine residue, is a prerequisite for obtaining homogenous protein products. The introduction of an unpaired Cys into the Cys-rich protein, insulin, was investigated by using a Cys scan. This was challenging as the introduced Cys could interfere with insulin's three existing disulfide bonds. However, eight insulin precursors were expressed in Saccharomyces cerevisiae with good yields. Although extensive post-translational modifications of the unpaired Cys were observed, the majority could be removed by selective reduction. An example Cys(7) insulin analogue was modified with a PEGylated maleimide moiety. The new variant was active in in vitro and in vivo models. Our results show that even small Cys-rich proteins can be expressed with additional unpaired Cys in meaningful yields and further chemically modified, while maintaining their biological activity.  相似文献   

10.
The advent of bioorthogonal chemistry has led to the development of powerful chemical tools that enable increasingly ambitious applications. In particular, these tools have made it possible to achieve what is considered to be the holy grail of many researchers involved in chemical biology: to perform unnatural chemical reactions within living organisms. In this minireview, we present an update of bioorthogonal reactions that have been carried out in animals for various applications. We outline the advances made in the understanding of fundamental biological processes, and the development of innovative imaging and therapeutic strategies using bioorthogonal chemistry.  相似文献   

11.
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.  相似文献   

12.
The conventional S-alkylation of cysteine relies upon using activated electrophiles. Here we demonstrate high-yielding and selective S-alkylation and S-lipidation of cysteines in unprotected synthetic peptides and proteins by using weak electrophiles and a Zn2+ promoter. Linear or branched iodoalkanes can S-alkylate cysteine in an unprotected 38-residue Myc peptide fragment and in a 91-residue miniprotein Omomyc, thus highlighting selective late-stage synthetic modifications. Metal-assisted cysteine alkylation is also effective for incorporating dehydroalanine into unprotected peptides and for peptide cyclisation via aliphatic thioether crosslinks, including customising macrocycles to stabilise helical peptides for enhanced uptake and delivery to proteins inside cells. Chemoselective and efficient late-stage Zn2+-promoted cysteine alkylation in unprotected peptides and proteins promises many useful applications.  相似文献   

13.
The selective modification of proteins with a synthetic probe is of central interest for many aspects of protein chemistry. We have recently reported a new approach in which a short cysteine-containing tag (CysTag) fused to one part of a split intein is first modified with a sulfhydryl-reactive probe. In a second step, protein trans-splicing is used to link the labelled CysTag to a target protein that has been expressed in fusion with the complementary split intein fragment. Here, we present the generation and biochemical characterisation of the artificially split Mycobacterium xenopi GyrA intein. We show that this split intein is active without a renaturation step and that it provides a significant improvement for the CysTag protein-labelling approach in terms of product yields and target protein tolerance. Two proteins with multiple cysteine residues, human growth hormone and a multidomain nonribosomal peptide synthetase, were site-specifically modified with high yields. Our approach combines the benefits of the plethora of commercially available cysteine-reactive probes with a straightforward route for their site-specific incorporation even into complex and cysteine-rich proteins.  相似文献   

14.
Alkoxide-directed metallacycle-mediated cross-coupling is a rapidly growing area of reaction methodology in organic chemistry. Over the last decade, developments have resulted in more than thirty new and highly selective intermolecular (or “convergent”) C−C bond-forming reactions that have established powerful retrosynthetic relationships in stereoselective synthesis. While early studies were focused on developing transformations that forge a single C−C bond by way of a functionalized and unsaturated metallacyclopentane intermediate, recent advances mark the ability to employ this organometallic intermediate in additional stereoselective transformations. Among these more advanced coupling processes, those that embrace the metallacycle in subsequent [4+2] chemistry have resulted in the realization of a number of highly selective annulative cross-coupling reactions that deliver densely functionalized and angularly substituted carbocycles. This review discusses the early development of this chemistry, recent advances in reaction methodology, and shares a glimpse of the power of these processes in natural product synthesis.  相似文献   

15.
Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.  相似文献   

16.
Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site‐selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light‐chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50–70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro‐substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site‐selective lysine labeling of antibodies and other immunoglobulin‐type proteins.  相似文献   

17.
Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of these molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. Methods for selective oxidation of C-H bonds have expanded significantly over the past decade, and their role in the synthesis of organic chemicals will continue to increase. Our group's contributions to this field are linked to our broader interest in the development and mechanistic understanding of aerobic oxidation reactions. Molecular oxygen (O(2)) is the ideal oxidant. Its low cost and lack of toxic byproducts make it a highly appealing reagent that can address key "green chemistry" priorities in industry. With strong economic and environmental incentives to use O(2), the commmodity chemicals industry often uses aerobic oxidation reactions. In contrast, O(2) is seldom used to prepare more-complex smaller-volume chemicals, a limitation that reflects, in part, the limited synthetic scope and utility of existing aerobic reactions. Pd-catalyzed reactions represent some of the most versatile methods for selective C-H oxidation, but they often require stoichiometric transition-metal or organic oxidants, such as Cu(II), Ag(I), or benzoquinone. This Account describes recent strategies that we have identified to use O(2) as the oxidant in these reactions. In Pd-catalyzed C-H oxidation reactions that form carbon-heteroatom bonds, the stoichiometric oxidant is often needed to promote difficult reductive elimination steps in the catalytic mechanism. To address this challenge, we have identified new ancillary ligands for Pd that promote reductive elimination, or replaced Pd with a Cu catalyst that undergoes facile reductive elimination from a Cu(III) intermediate. Both strategies have enabled O(2) to be used as the sole stoichiometric oxidant in the catalytic reactions. C-H oxidation reactions that form the product via β-hydride or C-C reductive elimination steps tend to be more amenable to the use of O(2). The use of new ancillary ligands has also overcome some of the limitations in these methods. Mechanistic studies are providing insights into some (but not yet all) of these advances in catalytic reactivity.  相似文献   

18.
Trans-cyclooctenes (TCOs) represent interesting and highly reactive dipolarophiles for organic transformations including bioorthogonal chemistry. Herein we show that TCOs react rapidly with nitrones and that these reactions are bioorthogonal. Kinetic analysis of acyclic and cyclic nitrones with strained-trans-cyclooctene (s-TCO) shows fast reactivity and demonstrates the utility of this cycloaddition reaction for bioorthogonal labelling. Labelling of the bacterial peptidoglycan layer with unnatural d -amino acids tagged with nitrones and s-TCO-Alexa488 is demonstrated. These new findings expand the bioorthogonal toolbox, and allow TCO reagents to be used in bioorthogonal applications beyond tetrazine ligations for the first time and open up new avenues for bioorthogonal ligations with diverse nitrone reactants.  相似文献   

19.
In this study, we present a convenient method for the labelling of tyrosine residues on bovine serum albumin (BSA) and human serum albumin (HSA) and report for the first time their subsequent bio-orthogonal conjugation with porphyrins via “click” chemistry. We demonstrate that these serum proteins can be labelled with an alkyne-diazonium heterobifunctional linker and can then undergo chemo-selective bio-orthogonal conjugation with a water-soluble azido metalloporphyrin via “click” chemistry to yield protein-conjugates that retain their photodynamic properties. In our hands, this method was found to be highly reproducible, scalable, and tuneable which allows for the production of bioconjugates where the porphyrin-protein conjugate not only retains an ability to generate singlet oxygen but possess an enhanced relative singlet oxygen quantum yields relative to the porphyrin alone. Furthermore, we have investigated the photochemical properties of these conjugates through photospectrometric techniques and have determined that the porphyrin macrocycles remain appreciably photostable under light irradiation. Our phototoxic protein-photosensitizer-conjugates show excellent photodynamic activity against a human colorectal adenocarcinoma cancer cell line (HT-29) with cell viabilities of 7.7±0.5 % (IC50 8.76±2.14 μM) and 1.7±1.9 % (IC50 8.48±5.11 μM) for BSA and HAS, respectively, when irradiated with 20 J cm−2 of white-light. Importantly, neither of the conjugates was found to possess any significant “dark” toxicity even at concentrations of 100 μM. Furthermore, the natural fluorescent properties of the bioconjugates allowed for the determination of cellular uptake in vitro via fluorescence microscopy thus highlighting the potential theranostic applications of these unique protein-drug-conjugates.  相似文献   

20.
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号