首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase noise performance of analog frequency dividers   总被引:1,自引:0,他引:1  
The phase noise performance obtainable using silicon and GaAs-based TTL (transistor-transistor logic) and ECL (emitter-coupled logic) logic level digital frequency dividers is discussed. Measurement of the spectral performance of two types of analog dividers is reported: a parametric divider using varactor diodes and a regenerative-type divider incorporating a double-balanced mixer in the oscillator feedback circuit. Both dividers were configured for divide-by-two operation at VHF. Evaluation indicates the regenerative divider is capable of providing much lower phase noise than conventional digital logic level devices. The regenerative divider can be successfully operated over bandwidths in excess of an octave, and the design lends itself to small (i.e. TO-8) modular package implementation. Operating frequencies are bounded only by the range of the mixer and RF amplifier utilized and, as such, should extend from HF through microwave.  相似文献   

2.
The results of residual phase noise measurements on a number of VHF, UHF, and microwave amplifiers, both silicon (Si) bipolar junction transistor (BJT) and gallium arsenide (GaAs) field effect transistor (FET) based, electronic phase shifters, frequency dividers and multipliers, etc., which are commonly used in a wide variety of frequency source and synthesizer applications are presented. The measurement technique has also been used to evaluate feedback oscillator components, such as the loop and buffer amplifiers, which can play important roles in determining an oscillator's output phase noise spectrum (often in very subtle ways). While some information has previously been published related to component residual phase noise properties, it generally focused on the flicker noise levels of the devices under test, for carrier offset frequencies less than 10 kHz. The work reported herein makes use of an extremely low noise, 500 MHz surface acoustic wave resonator oscillator (SAWRO) test source for residual phase noise measurements, both close-to-and far-from-the-carrier. Using this SAWRO-based test source at 500 MHz, we have been able to achieve a measurement system phase noise floor of -184 dBc/Hz, or better, for carrier offset frequencies greater than 10 kHz, and a system flicker phase noise floor of -150 dBc/Hz, or better, at 1 Hz carrier offset. The paper discusses the results of detailed residual phase noise measurements performed on a number of components using this overall system configuration. Several interesting observations related to the residual phase noise properties of moderate to high power RF amplifiers, i.e., amplifiers with 1 dB gain compression points in the range of +20 to +33 dBm, are highlighted  相似文献   

3.
A concept of interferometric measurements has been applied to the development of ultra-sensitive microwave noise measurement systems. These systems are capable of reaching a noise performance limited only by the thermal fluctuations in their lossy components. The noise floor of a real time microwave measurement system has been measured to be equal to -193 dBc/Hz at Fourier frequencies above 1 kHz. This performance is 40 dB better than that of conventional systems and has allowed the first experimental evidence of the intrinsic phase fluctuations in microwave isolators and circulators. Microwave frequency discriminators with interferometric signal processing have proved to be extremely effective for measuring and cancelling the phase noise in oscillators. This technique has allowed the design of X-band microwave oscillators with a phase noise spectral density of order -150 dBc/Hz at 1 kHz Fourier frequency, without the use of cryogenics. Another possible application of the interferometric noise measurements systems include “flicker noise-free” microwave amplifiers and advanced two oscillator noise measurement systems  相似文献   

4.
提出了首先对微波、毫米波信号进行下变频,再利用锁相环提取被测试信号相位噪声的相位噪声提取方法,采用现代谱分析技术对提取出的相位噪声信号在频率中进行分析,并利用"反卷积"技术实现测试系统的误差校正,研制实现了微波、毫米波相位噪声测试系统.实验测试结果表明该系统具有测试灵敏度高和被测信号频率范围广的优点,证明了它具有较大的应用价值.  相似文献   

5.
Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with -94 dBc/Hz phase noise at 10 kHz offset.  相似文献   

6.
基于CRLH-TL零阶谐振特性的新型串联功分器   总被引:1,自引:0,他引:1       下载免费PDF全文
 结构紧凑的功分器是微波信号分离、阵列天线馈电等应用场合的重要器件.利用混合右/左手传输线(CRLH-TL)来设计小尺寸的串联功分器,并对混合右/左手传输线的色散特性进行理论分析.利用贴片电容和微带线电感设计了一种新的混合右/左手传输线,处于零阶谐振状态的混合右/左手不引入相位偏移且波长为无穷大.基于CRLH-TL的零阶谐振特性设计制作了一个工作在2.45 GHz的4路微波功分器.此功分器等幅同相地将输入功率分配到各个输出端口,输出端口位置对功率分配没有影响.使用矢量网络分析仪对该功分器进行了实验测量,结果表明:在2.20~2.65 GHz的频率范围内,功分器各输出端口功率相差在1 dB内;在2.22~2.56 GHz的频率范围内,输出端口的相位差在15°以内.测量结果与仿真结果吻合良好.该微波功分器结构紧凑,可扩展到任意多个输出端口.  相似文献   

7.
The influence of the source AM noise in microwave residual phase noise experiments is investigated. The noise floor degradation problem, caused by the parasitic detection of this type of noise by an imperfectly balanced mixer, is solved thanks to a refinement of the quadrature condition. The parasitic noise contribution attributable to the AM to PM (phase modulation) conversion occurring in the device under test is minimized through the development of a dedicated microwave source featuring an AM noise level as low as -170 dBc/Hz at 10 kHz offset from a 3.5 GHz carrier  相似文献   

8.
We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ~200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb.  相似文献   

9.
The operating frequency range of an on-wafer noise parameter test set based on the multiple-impedance technique has been extended in the low-microwave frequency range (down to the L-band). A simple technique, using a phase shifter cascaded with the microwave tuner, allows different reflection coefficients of the load impedance to be obtained at the device input. These coefficients are well distributed over the Smith chart in the entire frequency range. As an example, noise parameters of a passive device have been measured between 1 and 8 GHz, and a good agreement between measured and calculated values is observed. This technique has also been used to measure the noise parameters of different heterojunction bipolar transistors. A minimum noise figure of 1 dB was obtained at 1 GHz on a GaAlAs/GaAs HBT which is in agreement with expected results  相似文献   

10.
Analysis tools for the accurate evaluation of a small frequency standard   总被引:1,自引:0,他引:1  
The short, optically pumped cesium beam tube developed at Laboratoire de l'Horloge Atomique has been carefully evaluated. For that purpose, we have developed a digital servo system that controls three parameters: the frequency of the ultra stable oscillator (USO), the microwave power of the signal experienced by the cesium atoms, and the static magnetic field applied to the atoms. The frequency standard shows a very satisfactory level of short- and medium-term frequency stabilities. A relative frequency offset, measured to be 4.10(-12 ), results mainly from the residual phase difference between the oscillatory fields in the two interaction regions, which is due to imperfection in cavity symmetry. We present two different means of analyzing the causes of this spurious frequency offset using theoretical and experimental considerations. First, a numerical simulation of the beam tube response is performed as a function of the microwave field amplitude for different values of the residual phase difference DeltaPhi. Results include the cavity-pulling effect. Compared with the measured frequency offset, the numerical simulation leads to a second-order Doppler shift of -3.3 mHz and a residual phase difference, DeltaPhi, between the fields interacting with the atoms in the second and first regions of the Ramsey cavity, amounting to +150 murad. Second, an experimental method of measurement of DeltaPhi without beam reversal is implemented. The latter yields DeltaPhi=155+/-17 murad. Finally, the clock accuracy is determined. It is equal to +/-14.10(-13).  相似文献   

11.
The demodulation of ultra-short light pulses with photodetectors is accompanied by excess phase noise at the pulse repetition rate and harmonics in the spectrum of the photocurrent. The major contribution to this noise is power fluctuations of the detected pulse train that, if not compensated for, can seriously limit the stability of frequency transfer from optical to microwave domain. By making use of an infrared femtosecond laser, we measured the spectral density of the excess phase noise, as well as power-to-phase conversion for different types of InGaAs photodetectors. Noise measurements were performed with a novel type of dual-channel readout system using a fiber coupled beam splitter. Strong suppression of the excess phase noise was observed in both channels of the measurement system when the average power of the femtosecond pulse train was stabilized. The results of this study are important for the development of low-noise microwave sources derived from optical "clocks" and optical frequency synthesis.  相似文献   

12.
The paper describes a new approach to synthesizing the Cs hyperfine frequency of 9.192 GHz that is designed to be sufficiently rugged for use in space, specifically for the Primary Atomic Reference Clock in Space (PARCS) planned for the International Space Station, as well as ground applications. This new approach requires no narrow band filters or frequency multiplication, and the primary source of cooling is conduction. Instead of frequency multiplication, it uses a custom regenerative divider stage followed by two commercial binary dividers and several mixing stages. A fractional frequency step of 2x10(-17) is achieved by mixing the output of a 48-bit numerically controlled oscillator with the microwave signal. Preliminary tests on the new synthesizer design indicate an internal fractional frequency stability of 1x10(-15) at 10 s and 1x10 (-18) at 1 d, dominated by the daily room temperature variations. The phase and amplitude noise are similar to our previous designs that used frequency multiplication and narrow band filters. The temperature coefficient is less than 0.2 ps/K.  相似文献   

13.
14.
This study reports the phase detection of the two-port flexural plate wave (FPW) sensor for designing and integrating the miniature system and provides a comprehensive methodology for portable using in the biosensor applications of severe acute respiratory syndrome coronavirus (SARS-CoV). The miniature system mainly utilizes the concept of the frequency divider that involves a divider, a time-based oscillator and a gate to reduce the high frequency, and the FPW sensor is fabricated using microelectromechanical systems (MEMS) technologies for producing a potable biosensing detector. The results demonstrate that the insertion loss decreased about -1.15% dB/degC, and the phase delay was about 2.05deg/(1000 cP). The phaseshift resolution was about 10 mV per degree, and the original frequency of 4.2 MHz was divided by 100 to reduce the frequency to 42 kHz. The SARS-CoV could be detected via the S protein binds to the human angiotensin-converting enzyme 2 (hACE2) as a functional receptor, which would cause the phase delay due to the combining of the antibody with the antigen. Therefore, the feasibility studies provide the information that phase detection is an appropriate low-cost technology via frequency divider for fabricating of the miniature biosensors.  相似文献   

15.
We discuss various aspects of high resolution measurements of phase fluctuations at microwave frequencies. This includes methods to achieve thermal noise limited sensitivity, along with the improved immunity to oscillator amplitude noise. A few prototype measurement systems were developed to measure phase fluctuations of microwave signals extracted from the optical pulse trains generated by femtosecond lasers. This enabled first reliable measurements of the excess phase noise associated with optical-to-microwave frequency division. The spectral density of the excess phase noise was found to be -140 dBc/Hz at 100 Hz offset from the 10 GHz carrier which was almost 40 dB better than that of a high quality microwave synthesizer.  相似文献   

16.
We report a detailed investigation on the effect of semiconductor laser phase noise on the achievable frequency stability when locked to a Mach-Zehnder interferometer fringe. We show that the modulation-demodulation operation produces in the presence of laser phase noise two kinds of excess noise, which could be much above the shot noise limit, namely: conversion noise (PM-to-AM) and intermodulation noise. We show that in typical stabilization conditions, the frequency stability of the locked laser is limited by the intermodulation excess noise. This effect, reported initially in the microwave domain, can be considerably reduced by a convenient choice of the modulation frequency. To our knowledge, this is the first time such a phenomenon is reported in the optical domain.  相似文献   

17.
We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Perot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.  相似文献   

18.
We demonstrate regenerative divide-by-two (halver) circuits with very low phase modulation (PM) noise at input frequencies of 18.4 GHz and 39.8 GHz. The PM noise of the 18.4 to 9.2 GHz divider pair was L(10 Hz)=-134 dB below the carrier in a 1 Hz bandwidth (dBc/Hz) and L(10 MHz)=-166 dBc/Hz, and the PM noise of the 39.8 GHz to 19.9 GHz divider pair was L(10 Hz)=-122 dBc/Hz and L(10 MHz)=-167 dBc/Hz.  相似文献   

19.
This paper focuses on the development of tools aiming to solve several problems related to the microwave interrogation signal in atomic fountains. We first consider the problem related to cycle synchronous phase transients caused by the sequential operation of the atomic fountain. To search for such systematic phase variations deeply buried in the microwave synthesizer phase noise, we have developed a novel triggered-phase transient analyzer capable of processing the microwave signal to extract the phase in a synchronous manner even in the presence of frequency modulation. With this device we check in vivo the LNE-SYRTE fountain's interrogation signals with a resolution approaching 1 microradian. In addition, using this device, we investigate an innovative approach to solve a second problem, namely, the shift caused by microwave leakage in the fountain. Our approach consists of switching off the fountain microwave interrogation signal when atoms are outside the microwave cavity. To do that, we have developed a switch that is almost free of phase transients and is thus able to eliminate the frequency shift caused by microwave leakage without inducing significant phase transients on the interrogation signal.  相似文献   

20.
A simple method is described for the evaluation of the various microwave mixer diodes which can be used in 9-GHz electron paramagnetic resonance (EPR) spectrometers using magnetic field modulation below 1 kHz. The advantage of this method over other methods is that it is optimized for EPR applications and determines the optimum operating conditions for each microwave diode. This method utilizes a microwave bridge with a reference arm with an attenuator to control the microwave bias power level, and a signal arm where the signal is attenuated, phase shifted, and modulated at the typical magnetic field modulation frequencies. The microwave power from the two arms is recombined and demodulated by the microwave diode. The output of the microwave diode is then recorded with various video loads, microwave bias power, and modulation frequencies. Measurements are performed to determine the effect of the preamplifier that followed the microwave diode on the signal-to-noise ratio (SNR). The recorded spectra are used to determine the SNR, the noise floor, and the 1/f corner frequency. Comparison of these factors for the different types of microwave diodes shows that some Schottky-barrier diodes have noise figures at 1 kHz that are as low as those for tunnel diodes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号