首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Traditionally, distributed query optimization techniques generate static query plans at compile time. However, the optimality of these plans depends on many parameters (such as the selectivities of operations, the transmission speeds and workloads of servers) that are not only difficult to estimate but are also often unpredictable and fluctuant at runtime. As the query processor cannot dynamically adjust the plans at runtime, the system performance is often less than satisfactory. In this paper, we introduce a new highly adaptive distributed query processing architecture. Our architecture can quickly detect fluctuations in selectivities of operations, as well as transmission speeds and workloads of servers, and accordingly change the operation order of a distributed query plan during execution. We have implemented a prototype based on the Telegraph system [Telegragraph project. Available from >]. Our experimental study shows that our mechanism can adapt itself to the changes in the environment and hence approach to an optimal plan during execution.  相似文献   

2.
查询是数据库系统的主要负载,其效率决定了数据库性能的好坏。一个查询存在多种执行计划,当前,查询优化器只能按照数据库系统的配置参数,静态地为查询选择一个较优的执行计划。并行查询间存在复杂多变的资源争用,很难通过配置参数准确反映,而且同一执行计划在不同情景下的效率并不一致。并行查询下执行计划的选择需考虑查询间的相互影响——查询交互。基于此,提出了一种在并行查询下度量查询受查询交互影响大小的标准QIs。针对并行查询下查询执行计划的选择,还提出了一种动态地为查询选择执行计划的方法TRating,该方法通过比较查询组合中按不同执行计划执行的查询受查询交互影响的大小,选择受查询交互影响较小的执行计划作为该查询的较优执行计划。实验结果表明,TRating方法为查询选择较优执行计划的准确率达61%,相比查询优化器提高了25%;而且在为查询选择次优执行计划时,其准确率也高达69%。  相似文献   

3.
A wireless sensor network (WSN) is composed of tens or hundreds of spatially distributed autonomous nodes, called sensors. Sensors are devices used to collect data from the environment related to the detection or measurement of physical phenomena. In fact, a WSN consists of groups of sensors where each group is responsible for providing information about one or more physical phenomena (e.g., group for collecting temperature data). Sensors are limited in power, computational capacity, and memory. Therefore, a query engine and query operators for processing queries in WSNs should be able to handle resource limitations such as memory and battery life. Adaptability has been explored as an alternative approach when dealing with these conditions. Adaptive query operators (algorithms) can adjust their behavior in response to specific events that take place during data processing. In this paper, we propose an adaptive in-network aggregation operator for query processing in sensor nodes of a WSN, called ADAGA (ADaptive AGgregation Algorithm for sensor networks). The ADAGA adapts its behavior according to memory and energy usage by dynamically adjusting data-collection and data-sending time intervals. ADAGA can correctly aggregate data in WSNs with packet replication. Moreover, ADAGA is able to predict non-performed detection values by analyzing collected values. Thus, ADAGA is able to produce results as close as possible to real results (obtained when no resource constraint is faced). The results obtained through experiments prove the efficiency of ADAGA.  相似文献   

4.
一种实时数据库查询执行方法的设计   总被引:1,自引:0,他引:1  
在深入分析实时数据库常用的查询执行方法---指针法缺点基础上,给出了一种新的实时数据库查询执行方法---D/S方法。该方法结合了指针法、实体化方法和流水线方法的优点,可有效地节省查询执行的内存需求,并扩展了实时数据库查询优化的空间。  相似文献   

5.
In this paper, we propose an intelligent distributed query processing method considering the characteristics of a distributed ontology environment. We suggest more general models of the distributed ontology query and the semantic mapping among distributed ontologies compared with the previous works. Our approach rewrites a distributed ontology query into multiple distributed ontology queries using the semantic mapping, and we can obtain the integrated answer through the execution of these queries. Furthermore, we propose a distributed ontology query processing algorithm with several query optimization techniques: pruning rules to remove unnecessary queries, a cost model considering site load balancing and caching, and a heuristic strategy for scheduling plans to be executed at a local site. Finally, experimental results show that our optimization techniques are effective to reduce the response time.  相似文献   

6.
The CQL continuous query language: semantic foundations and query execution   总被引:2,自引:0,他引:2  
CQL, a continuous query language, is supported by the STREAM prototype data stream management system (DSMS) at Stanford. CQL is an expressive SQL-based declarative language for registering continuous queries against streams and stored relations. We begin by presenting an abstract semantics that relies only on “black-box” mappings among streams and relations. From these mappings we define a precise and general interpretation for continuous queries. CQL is an instantiation of our abstract semantics using SQL to map from relations to relations, window specifications derived from SQL-99 to map from streams to relations, and three new operators to map from relations to streams. Most of the CQL language is operational in the STREAM system. We present the structure of CQL's query execution plans as well as details of the most important components: operators, interoperator queues, synopses, and sharing of components among multiple operators and queries. Examples throughout the paper are drawn from the Linear Road benchmark recently proposed for DSMSs. We also curate a public repository of data stream applications that includes a wide variety of queries expressed in CQL. The relative ease of capturing these applications in CQL is one indicator that the language contains an appropriate set of constructs for data stream processing. Edited by M. Franklin  相似文献   

7.
Given a set D of trajectories, a query object q, and a query time extent Γ, a mutual (i.e., symmetric) nearest neighbor (MNN) query over trajectories finds from D, the set of trajectories that are among the k1 nearest neighbors (NNs) of q within Γ, and meanwhile, have q as one of their k2 NNs. This type of queries is useful in many applications such as decision making, data mining, and pattern recognition, as it considers both the proximity of the trajectories to q and the proximity of q to the trajectories. In this paper, we first formalize MNN search and identify its characteristics, and then develop several algorithms for processing MNN queries efficiently. In particular, we investigate two classes of MNN queries, i.e., MNNP and MNNT queries, which are defined with respect to stationary query points and moving query trajectories, respectively. Our methods utilize the batch processing and reusing technology to reduce the I/O cost (i.e., number of node/page accesses) and CPU time significantly. In addition, we extend our techniques to tackle historical continuous MNN (HCMNN) search for moving object trajectories, which returns the mutual nearest neighbors of q (for a specified k1 and k2) at any time instance of Γ. Extensive experiments with real and synthetic datasets demonstrate the performance of our proposed algorithms in terms of efficiency and scalability.  相似文献   

8.
How to process a skyline query efficiently has received considerable attention in recent years. A skyline query identifies a set of non-dominated data records in a multidimensional dataset. Whereas most previous studies have resolved this problem in a centralized environment, this work considers it in a distributed sensor network environment. An algorithm, known as Skyline Sensor Algorithm (SkySensor), is presented to efficiently retrieve skyline results from a sensor network. A cluster-based architecture is designed in SkySensor to collect all sensor readings. A pruning method is then proposed to progressively sift out the skyline results from the sensor network. SkySensor avoids the need of collecting data from all sensors in the network, which is an extremely expensive action, when searching for the skyline results. The performance study indicates that SkySensor is highly efficient, and significantly outperforms previous methods in processing skyline queries.  相似文献   

9.
A minimal framework for an object-oriented query language standard should (1) include a formal definition of a high-level data model and the syntax and semantics of associated query languages, (2) provide the functionality of relational query languages, and (3) support proofs of correctness of transformations for logical query optimization. In this paper, a high-level conceptual model for object-oriented query processing is discussed; the model includes widely-used structural abstractions such as the isa relationship, associations (properties) between complex objects and complex objects/values, and inheritance of properties. A formal, algebraic query language for the model, inspired by relational algebra, is presented. Operators of the algebra allow queries based on values, queries that manipulate entire objects, and queries that construct new objects from existing objects/values. All queries retain connections to existing database objects, providing logical access paths to data. Each query result is a class, so the algebra has the closure property. The intensional and extensional results of query operators are summarized. Two forms of logical query optimization supported by the query algebra are outlined: algebraic transformations and classifier-based optimizations (optimizations which employ inclusion and exclusion dependencies between classes).  相似文献   

10.
为实现数据集成查询我们会用到查询优化器,而传统的查询优化器生成的执行计划会由于以下几个原因产生不良的结果:成本估计不正确,运行时可用的内存不足和数据传输率无法预测,所有这些问题都要求助于动态策略来修正静态的查询执行计划。介绍了一个动态的查询处理框架和这个框架用到的动态策略。  相似文献   

11.
Optimization of parallel query execution plans in XPRS   总被引:1,自引:0,他引:1  
In this paper, we describe our approach to optimization of query execution plans in XPRS, a multiuser parallel database system based on a shared memory multiprocessor and a disk array. The main difficulties in this optimization problem are the compile-time unknown parameters such as available buffer size and number of free processors, and the enormous search space of possible parallel plans. We deal with these problems with a novel two phase optimization strategy which dramatically reduces the search space and allows run time parameters without significantly compromising plan optimality. In this paper we present our two phase optimization strategy and give experimental evidence from XPRS benchmarks that indicate that it almost always produces optimal or close to optimal plans.  相似文献   

12.
13.
Optimizing query processing is always a challenging task in the XML database community. Current state-of-the-art approaches focus mainly on simple query. Yet, as the usage of XML shifts towards the data-oriented paradigm, more and more complex query processing needs to be supported. In this paper, we present TwigX-Guide, a hybrid system, which takes advantage of the beautiful features of path summary in DataGuide and region encoding in TwigStack to improve complex query processing. Experimental results indicate that TwigX-Guide can process complex queries on an average 38% better than the TwigStack algorithm, 31% better than TwigINLAB, 11% better than TwigStackList and about 9% better than TwigStackXB in terms of execution time.  相似文献   

14.
在分布式数据库系统中,由于数据的分布和冗余,使得分布式查询处理增加了许多新的内容和复杂性,通过分析现有分布式数据库查询处理技术,根据应用实际提出一种新的查询处理方法,该方法通过将常用查询结果存储在本地来减少查询时的数据传输量,从而缩短了响应时间.实验证明了该方法是有效的.  相似文献   

15.
国冰磊  于炯  廖彬  杨德先 《计算机应用》2015,35(12):3362-3367
为构建节能的绿色数据库,提出一种基于结构化查询语言(SQL)资源(中央处理单元(CPU)、磁盘)消耗的最小单位的数据库动态能耗模型。该模型对系统动态能耗进行解析,将系统主要硬件(CPU、磁盘)的资源消耗映射成功率消耗,采用多元线性回归方法拟合模型关键参数,实时地估算系统动态功率,构建单位统一的动态功耗模型。实验结果表明,相比基于元组总数的模型,CPU指令总数能更好地反映CPU的功率消耗,所构模型在数据库管理系统(DBMS)独占系统资源的静态环境下,平均相对误差小于6%,绝对误差不超过9%。该动态功耗模型更适合于构建节能的绿色数据库。  相似文献   

16.
The problem of word mismatch in information retrieval (IR) occurs because users often use different words to describe concepts in their queries than authors use to describe the same concepts in their documents. Query expansion is used to deal with the mismatch between author and user vocabularies. To support query expansion, indices on words related by lexical semantics and syntactical co-occurrence need to be maintained. Two issues become paramount in supporting query expansion: the size of index tables and the query processing overhead. In this paper, we propose to use the notion of multi-granularity for more efficient indexing and query processing while the same degrees of precision and recall are maintained. We also describes extensions of this technique to handle: (1) query relaxation to handle words with multiple senses and with other semantic relationships; (2) progressive processing of queries with top N results and (3) progressive processing of queries with specification of the importance of each keyword.  相似文献   

17.
Approximate query processing using wavelets   总被引:7,自引:0,他引:7  
Approximate query processing has emerged as a cost-effective approach for dealing with the huge data volumes and stringent response-time requirements of today's decision support systems (DSS). Most work in this area, however, has so far been limited in its query processing scope, typically focusing on specific forms of aggregate queries. Furthermore, conventional approaches based on sampling or histograms appear to be inherently limited when it comes to approximating the results of complex queries over high-dimensional DSS data sets. In this paper, we propose the use of multi-dimensional wavelets as an effective tool for general-purpose approximate query processing in modern, high-dimensional applications. Our approach is based on building wavelet-coefficient synopses of the data and using these synopses to provide approximate answers to queries. We develop novel query processing algorithms that operate directly on the wavelet-coefficient synopses of relational tables, allowing us to process arbitrarily complex queries entirely in the wavelet-coefficient domain. This guarantees extremely fast response times since our approximate query execution engine can do the bulk of its processing over compact sets of wavelet coefficients, essentially postponing the expansion into relational tuples until the end-result of the query. We also propose a novel wavelet decomposition algorithm that can build these synopses in an I/O-efficient manner. Finally, we conduct an extensive experimental study with synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based approach compared to sampling and histograms. Our results demonstrate that our techniques: (1) provide approximate answers of better quality than either sampling or histograms; (2) offer query execution-time speedups of more than two orders of magnitude; and (3) guarantee extremely fast synopsis construction times that scale linearly with the size of the data. Received: 7 August 2000 / Accepted: 1 April 2001 Published online: 7 June 2001  相似文献   

18.
Redundant processing is a key problem in the translation of initial queries posed over an ontology into SQL queries, through mappings, as it is performed by ontology-based data access systems. Examples of such processing are duplicate answers obtained during query evaluation, which must finally be discarded, or common expressions evaluated multiple times from different parts of the same complex query. Many optimizations that aim to minimize this problem have been proposed and implemented, mostly based on semantic query optimization techniques, by exploiting ontological axioms and constraints defined in the database schema. However, data operations that introduce redundant processing are still generated in many practical settings, and this is a factor that impacts query execution. In this work we propose a cost-based method for query translation, which starts from an initial result and uses information about redundant processing in order to come up with an equivalent, more efficient translation. The method operates in a number of steps, by relying on certain heuristics indicating that we obtain a more efficient query in each step. Through experimental evaluation using the Ontop system for ontology-based data access, we exhibit the benefits of our method.  相似文献   

19.
20.
Dataflow query execution in a parallel main-memory environment   总被引:2,自引:0,他引:2  
In this paper, the performance and characteristics of the execution of various join-trees on a parallel DBMS are studied. The results of this study are a step into the direction of the design of a query optimization strategy that is fit for parallel execution of complex queries.Among others, synchronization issues are identified to limit the performance gain from parallelism. A new hash-join algorithm is introduced that has fewer synchronization constraints than the known hash-join algorithms. Also, the behavior of individual join operations in a join-tree is studied in a simulation experiment. The results show that the introduced Pipelining hash-join algorithm yields a better performance for multi-join queries. The format of the optimal join-tree appears to depend on the size of the operands of the join: A multi-join between small operands performs best with a bushy schedule; larger operands are better off with a linear schedule. The results from the simulation study are confirmed with an analytic model for dataflow query execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号