首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problem of the robust H1 filtering for a class of Lurie singular systems with state time-delays, parameter uncertainties and unknown statistics characteristics but with limited power disturbance, aiming to design a robustly stable filter such that the uncertain Lurie time-delay singular systems are not only regular, impulse free and stable, but also have a prescribed level of H[[infinity]] performance for the filtering error dynamics for all admissible uncertainties. A sufficient condition for the existence of such a filter is proposed in terms of linear matrix inequalities (LMIs). When a solution to this set of LMIs exists, the parametric matrices of a desired filter can be easily obtained using LMI toolbox.  相似文献   

2.
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach. Key words 2-D singular systems, jump modes, general Riccati inequality, bilinear matrix i  相似文献   

3.
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach.  相似文献   

4.
Robust H-infinity filtering for a class of uncertain discrete-time linear systems with time delays and missing measurements is studied in this paper. The uncertain parameters are supposed to reside in a convex polytope and the missing measurements are described by a binary switching sequence satisfying a Bernoulli distribution. Our attention is focused on the analysis and design of robust H-infinity filters such that, for all admissible parameter uncertainties and all possible missing measurements, the filtering error system is exponentially mean-square stable with a prescribed H-infinity disturbance attenuation level. A parameter-dependent approach is proposed to derive a less conservative result. Sufficient conditions are established for the existence of the desired filter in terms of certain linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of the desired filter is also provided. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed method.  相似文献   

5.
In this paper, delay-dependent robust stabilization and H∞ control for uncertain stochastic Takagi-Sugeno (T-S) fuzzy systems with discrete interval and distributed time-varying delays are discussed. The purpose of the robust stochastic stabilization problem is to design a memoryless state feedback controller such that the closed-loop system is mean-square asymptotically stable for all admissible uncertainties. In the robust H∞ control problem, in addition to the mean-square asymptotic stability requirement, a prescribed H∞ performance is required to be achieved. Sufficient conditions for the solvability of these problems are proposed in terms of a set of linear matrix inequalities (LMIs) and solving these LMIs, a desired controller can be obtained. Finally, two numerical examples are given to illustrate the effectiveness and less conservativeness of our results over the existing ones.  相似文献   

6.
考虑有限字长影响的离散时间非脆弱H∞滤波   总被引:2,自引:0,他引:2  
The nonfragile H_∞filtering problem affected by finite word length (FWL) for linear discrete-time systems is investigated in this paper.The filter to be designed is assumed to be with additive gain variations,which reflect the FWL effects on filter implementation.A notion of structured vertex separator is proposed to deal with the problem and exploited to develop sufficient conditions for the nonfragile H_∞filter design in terms of a set of linear matrix inequalities (LMIs).The design renders the augmented system asymptotically stable and guarantees the H_∞attenuation level less than a prescribed level.A numerical example is given to illustrate the effect of the proposed method.  相似文献   

7.
In this paper, a new reliable H-infinity filter design problem is proposed for a class of continuous-time systems with sensor saturation and failures. Attention is focused on the analysis and synthesis problems of a full order reliable H-infinity filter such that the filtering error dynamics is asymptotically stable with a guaranteed disturbance rejection attenuation level γ. It is shown that the filtering error dynamics obtained from the original system plus the filter can be modeled by a linear system with sector bounded nonlinearity. The design conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs). These conditions are then considered in a convex optimization problem with LMIs constraints in order to design an optimal reliable H-infinity filter. A numerical example is given to illustrate the effectiveness of the proposed results.  相似文献   

8.
This paper develops fuzzy H_∞filter for state estimation approach for nonlinear discrete- time systems with multiple time delays and unknown bounded disturbances.We design a stable fuzzy H_∞filter based on the Takagi-Sugeno (T-S) fuzzy model,which assures asymptotic stability and a prescribed H_∞index for the filtering error system.Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem.The LMI problem can be efficiently solved with global convergence using the interior point algorithm.Simulation examples are provided to illustrate the design procedure of the proposed method.  相似文献   

9.
This study deals with the robust H-infinity filtering for a class of Delta operator systems with polytopic uncertainties. By the aid of introducing two slack matrices to eliminate the coupling between systems matrices and Lyapunov matrices, an improved version of the bounded real lemma is given via linear matrix inequality formulation, which shows a close correspondence between the continuous-and discrete-time H-infinity performance criterion. Based on it, the existence condition of the desired filter is obtained such that the corresponding filtering error system is asymptotically stable with a guaranteed performance index. A numerical example is employed to illustrate the feasibility and advantages of the proposed design.  相似文献   

10.
This paper considers the problem of delay-dependent robust stability for uncertain singular systems with additive time-varying delays. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties. The results are expressed in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper deals with H-infinity filtering of discrete-time systems with polytopic uncertainties. The un- certain parameters are supposed to reside in a polytope. By using the parameter-dependent Lyapunov function approach and introducing some slack matrix variables, a new sufficient condition for the H-infinity filter design is presented in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing results for H-infinity filter design, the main advantage of the proposed design method is the reduced conservativeness. An example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

12.
一类离散非线性不确定时滞系统的鲁棒滑模滤波   总被引:1,自引:0,他引:1  
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.  相似文献   

13.
This paper investigates the H∞ filtering problem for a class of linear continuous-time systems with both time delay and saturation. Such systems have time delay in their state equations and saturation in their output equations, and their process and measurement noises have unknown statistical characteristics and bounded energies. Based on the Lyapunov-Krasovskii stability theorem and the linear matrix inequalities (LMIs) technique, a generalized dynamic filter architecture is proposed, and a filter design method is developed. The linear H∞ filter designed by the method can guarantee the H∞ performance. The parameters of the designed filter can be obtained by solving a kind of LMI. An illustrative example shows that the design method proposed in this paper is very effective.  相似文献   

14.
This paper develops fuzzy H1 filter for state estimation approach for nonlinear discrete-time systems with multiple time delays and unknown bounded disturbances. We design a stable fuzzy H1 filter based on the Takagi-Sugeno (T-S) fuzzy model, which assures asymptotic stability and a prescribed H1 index for the filtering error system. Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem. The LMI problem can be efficiently solved with global convergence using the interior point algorithm. Simulation examples are provided to illustrate the design procedure of the proposed method.  相似文献   

15.
The problem of optimal guaranteed cost control for discrete-time singular large-scale systems with a quadratic cost function is considered in this paper. The system under discussion is subject to norm bounded time-invariant parameter uncertainty in all the matrices of model. The problem we address is to design a state feedback controller such that the closed-loop system not only is robustly stable but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of guaranteed cost controllers is presented in terms of linear matrix inequalities (LMIs), and a desired state feedback controller is obtained via convex optimization. An illustrative example is given to demonstrate the effectiveness of the proposed approach.  相似文献   

16.
This paper addresses an infinite horizon distributed H2/H∞ filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed H2 and H∞ schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with H2/H∞ performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.  相似文献   

17.
具有测量数据部分丢失的离散系统的H∞滤波器设计   总被引:6,自引:0,他引:6  
王武  杨富文 《自动化学报》2006,32(1):107-111
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.  相似文献   

18.
For packet-based transmission of data over a network, or temporary sensor failure, etc., data samples may be missing in the measured signals. This paper deals with the problem of H∞ filter design for linear discrete-time systems with missing measurements. The missing measurements will happen at any sample time, and the probability of the occurrence of missing data is assumed to be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of the proposed design approach.  相似文献   

19.
The problem of mixed H2/H∞ filtering for polytopic Delta operator systems is investigated. The aim is to design a linear asymptotically stable filter which guarantees that the filtering error system has different performances in different filtering channels. Based on a parameter-dependent Lyapunov function, a new mixed H2/H∞ performance criterion is presented. Upon this performance criterion, a sufficient condition for the full-order mixed H2/H∞ filter is derived in terms of linear matrix inequalities. The filter can be obtained from the solution of a convex optimization problem. The proposed filter design procedure is less conservative than the strategy based on the quadratic stability notion. A numerical example is given to illustrate the feasibility of the proposed approach.  相似文献   

20.
This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号