首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the photovoltaic (PV) characteristics of both glow discharge deposited hydrogenated amorphous silicon (a-Si:H) on crystalline silicon (c-Si) in a n+ a-Si:H/undoped a-Si:H/p c-Si type structure, and DC magnetron sputtered a-Si:H in a n-type a-Si:H/p c-Si type solar cell structure. It was found that the PV properties of the solar cells were influenced very strongly by the a-Si/c-Si interface. Properties of strongly interface limited devices were found to be independent of a-Si thickness and c-Si resistivity. A hydrofluoric acid passivation prior to RF glow discharge deposition of a-Si:H increases the short circuit current density from 2.57 to 25.00 mA/cm2 under 1 sun conditions.DC magnetron sputtering of a-Si:H in a Ar/H2 ambient was found to be a controlled way of depositing n type a-Si:H layers on c-Si for solar cells and also a tool to study the PV response with a-Si/c-Si interface variations. 300 Å a-Si sputtered onto 1–10 ω cm p-type c-Si resulted in 10.6% efficient solar cells, without an A/R coating, with an open circuit voltage of 0.55 V and a short circuit current density of 30 mA/cm2 over a 0.3 cm2 area. High frequency capacitance-voltage measurements indicate good junction characteristics with zero bias depletion width in c-Si of 0.65 μm. The properties of the devices have been investigated over a wide range of variables like substrate resistivity, a-Si thickness, and sputtering power. The processing has focused on identifying and studying the conditions that result in an improved a-Si/c-Si interface that leads to better PV properties.  相似文献   

2.
Undoped hydrogenated amorphous silicon (a-Si:H)/p-type crystalline silicon (c-Si) structures with and without a microcrystalline silicon (μc-Si) buffer layer have been investigated as a potential low-cost heterojunction (HJ) solar cell. Unlike the conventional HJ silicon solar cell with a highly doped window layer, the undoped a-Si:H emitter was photovoltaically active, and a thicker emitter layer was proven to be advantageous for more light absorption, as long as the carriers generated in the layer are effectively collected at the junction. In addition, without using heavy doping and transparent front contacts, the solar cell exhibited a fill factor comparable to the conventional HJ silicon solar cell. The optimized configuration consisted of an undoped a-Si:H emitter layer (700 Å), providing an excellent light absorption and defect passivation, and a thin μc-Si buffer layer (200 Å), providing an improved carrier collection by lowering barrier height at the interface, resulting in a maximum conversion efficiency of 10% without an anti-reflective coating.  相似文献   

3.
By using a seeding technique it has been possible to reduce the thickness of p-μc-Si:H film to 230 Å, with an improved electrical conductivity (0.93 S cm−1) and lower optical absorption compared to those of conventional p-μc-Si:H layers without a seed layer, for use at the tunnel junction and as the top layer of a double junction n–i–p structured a-Si solar cell. Undoped-μc-Si:H has been used as the seed layer. The layers were prepared by the radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) method (13.56 MHz) at 40 mW/cm2 rf power density and low substrate temperature (200 °C). The ultrathin seed layer (30 Å) enhances the growth of microcrystallinity of the p-type μc-Si:H film as confirmed by the results of transmission electron microscopy (TEM) analysis and Raman spectroscopy.  相似文献   

4.
We have investigated the carrier transport mechanisms in undoped a-Si:H/p-type c-Si heterojunctions with and without a μc-Si buffer layer, as well as their effects on the photovoltaic properties of the junction. The conduction behavior of the junction is strongly affected by the defect state distribution and band offset at the hetero-interface. The recombination process involving the interface states on the thin film silicon (a-Si:H/μc-Si) side dominates at low forward bias (V<0.3 V), whereas multistep tunneling capture emission (MTCE) dominates in the higher bias region (0.3<V<0.55 V) until the conduction becomes space charge limited (V>0.55 V). The MTCE process seems to be more closely related to the bulk defects in the thin film silicon than the interface states. In addition, the position of a trapping level, where the tunneling process occurs, seems to be determined by the hole energy at the edge of the c-Si and the trap distribution in the thin film silicon. Despite the domination of MTCE in the indicated voltage range, the reduced band offset at the interface increases current levels by the enhanced diffusion and/or emission processes. The insertion of a 200 Å thick μc-Si buffer layer between the a-Si:H (700 Å)/c-Si increases the solar cell efficiency to 10%, without an antireflective coating, by improving both the carrier transport and the red response of the cell.  相似文献   

5.
This paper reviews recent efforts to provide the scientific and technological basis for cost-effective and highly efficient thin film solar modules based on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon. Textured ZnO:Al films prepared by sputtering and wet chemical etching were applied to design optimised light-trapping schemes. Necessary prerequisite was the detailed knowledge of the relationship between film growth, structural properties and surface morphology obtained after etching. High rate deposition using plasma enhanced chemical vapour deposition at 13.56 MHz plasma excitation frequency was developed for μc-Si:H solar cells yielding efficiencies of 8.1% and 7.5% at deposition rates of 5 and 9 Å/s, respectively. These μc-Si:H solar cells were successfully up-scaled to a substrate area of 30×30 cm2 and applied in a-Si:H/μc-Si:H tandem cells showing initial test cell efficiencies up to 11.9%.  相似文献   

6.
The influence of the preparation conditions (process pressure, substrate temperature, RF-power density and deposition time/thickness) on the optical and electrical properties of intrinsic hydrogenated amorphous silicon (a-Si:H) has been investigated with the aim of optimising such films to be used as absorbent layers of a-Si:H-based p-i-n solar cells. Highly photosensitive films have been obtained at high growth rates (6.2 Å s−1) in the depletion regime using a high process pressure (1000 mTorr), a moderate substrate temperature (250°C) and a relatively high RF-power density (35.2 mW cm−2). These films have excellent properties for the application in question.  相似文献   

7.
Multilayer structures of the type a-Si:H/μc-Si:H were fabricated for the first time by hot wire chemical vapor deposition (HW-CVD) technique. These multilayers were studied for their opto-electronic and photovoltaic properties as a function of a-Si:H sublayer thickness. The microcrystalline phase of a-Si (μc-Si:H) of thickness 250 Å have been used to create drift field in these multilayer structures. The quantum size and photovoltaic effects are observed in these multilayer structures. The persistent photoconductivity measurements clearly indicate the existence of interface defects and spatial charge separation due to the formation of p-n junction field. The best photovoltaic performance was obtained with the fill factor 0.4062 and conversion efficiency (η) 2.08% over an active area of 0.0132 cm2. The advantage in these multilayer structures is that no hazardous gases are involved in the fabrication process because no intentional doping is performed and all depositions were carried out in a single deposition chamber.  相似文献   

8.
This paper presents a-Si:H and μc-Si:H p–i–n solar cells prepared at high deposition rates using RF (13.56 MHz) excitation frequency. A high deposition pressure was found as the key parameter to achieve high efficiencies at high growth rates for both cell types. Initial efficiencies of 7.1% and 11.1% were achieved for a μc-Si:H cell and an a-Si:H/μc-Si:H tandem cell, respectively, at a deposition rate of 6 Å/s for the μc-Si i-layers. A μc-Si:H cell prepared at 9 Å/s exhibited an efficiency of 6.2%.  相似文献   

9.
The electrical, structural and optical properties of hydrogenated amorphous silicon (a-Si:H) films deposited from pure silane (SiH4) using hot wire chemical vapor deposition (HW-CVD) technique are systematically studied as a function of silane flow rate between 5 and 30 sccm. We found that the properties are greatly affected by the silane flow rate over the range we studied. The device quality a-Si:H films with a photosensitivity >105 were deposited by HW-CVD at a deposition rate >10 Å s−1 using low silane flow rate. However, a-Si:H films deposited at higher silane flow rate and/or higher deposition rates show degradation in their structural and electrical properties. The FTIR studies indicate that the hydrogen bonding in a-Si:H films shifts from mono-hydrogen (Si–H) to di-hydrogen (Si–H2) and (Si–H2)n complexes when films were deposited at higher silane flow rate. The hydrogen content in the a-Si:H films increases with increase in silane flow rate and was found to be less than 10 at.%. The Raman spectra show increase in disorder and the Rayleigh scattering with increase in silane flow rate. The optical band gap also shows an increasing trend with silane flow rate. Therefore, only the hydrogen content cannot be accounted for the increase in the optical band gap. We think that the increase in the optical band gap may be due to the increase in the voids. These voids reduce the effective density of material and increase the average Si–Si distance, which is responsible for the increase in the band gap. Silane flow rate of 5 sccm, appears to be an optimum flow rate for the growth of mono-hydrogen (Si–H) bonded species having low hydrogen content (4.25 at%) in a-Si:H films at high deposition rate (12.5 Å s−1), high photosensitivity (105) and small structural disorder.  相似文献   

10.
We deposited a-Si : H,F films at a high-growth rate (15 Å/s) using a SiH4 and SiF4 gas mixture to examine the effect of halogen additives on the film stability against light exposure. Fluorinated a-Si : H films show a high conductivity over 5×10−5 S/cm and the Schottky cells made with fluorinated films exhibit an improved fill factor after light-soaking. SIMS measurements show an increased oxygen incorporation into the film at a SiF4 flow of 5 sccm or larger, while virtually no increase is seen when a small SiF4 flow rate of 1 sccm is used. This is presumably an indication that a small amount of SiF4 can actually help improve the stability of a-Si : H films against light exposure.  相似文献   

11.
This paper reviews recent progress in large-area a-Si/a-SiGe tandem solar cells at Sanyo. Optimized hydrogen dilution conditions for high-rate deposition of hydrogenated amorphous silicon (a-Si:H) films and thinner i-layer structures have been systematically investigated for improving both the stabilized efficiency and the process throughput. As a result, a high photosensitivity of 106 for a-Si:H films has been maintained up to the deposition rate of 15 Å/s. Furthermore, the world's highest initial conversion efficiency of 11.2% which corresponds to a stabilized efficiency of about 10% has been achieved for a 8252 cm2 a-Si/a-SiGe tandem solar cell by combining the optimized hydrogen dilution and other successful technologies.  相似文献   

12.
Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH4) using hot-wire chemical vapor deposition (HW-CVD) method. We have investigated the effect of substrate temperature on the structural, optical and electrical properties of these films. Deposition rates up to 15 Å s−1 and photosensitivity 106 were achieved for device quality material. Raman spectroscopic analysis showed the increase of Rayleigh scattering in the films with increase in substrate temperature. The full width at half maximum of TO peak (ΓTO) and deviation in bond angle (Δθ) are found smaller than those obtained for P-CVD deposited a-Si:H films. The hydrogen content in the films was found <1 at% over the range of substrate temperature studied. However, the Tauc's optical band gap remains as high as 1.70 eV or much higher. The presence of microvoids in the films may be responsible for high value of band gap at low hydrogen content. A correlation between electrical and structural properties has been found. Finally, the photoconductivity degradation of optimized a-Si:H film under intense sunlight was also studied.  相似文献   

13.
We report on the use of pulsed plasma-enhanced chemical vapor deposition (P-PECVD) technique and show that “state-of-the-art” amorphous silicon (a-Si:H) materials and solar cells can be produced at a deposition rate of up to 15 Å/s using a modulation frequency in the range 1–100 kHz. The approach has also been developed to deposit materials and devices onto large area, 30 cm×40 cm, substrates with thickness uniformity (<5%), and gas utilization rate (>25%). We have developed a new “hot wire” chemical vapor deposition (HWCVD) method and report that our new filament material, graphite, has so far shown no appreciable degradation even after deposition of 500 μm of amorphous silicon. We report that this technique can produce “state-of-the-art” a-Si:H and that a solar cell of p/i/n configuration exhibited an initial efficiency approaching 9%. The use of microcrystalline silicon (μc-Si) materials to produce low-cost stable solar cells is gaining considerable attention. We show that both of these techniques can produce thin film μc-Si, dependent on process conditions, with 1 1 1 and/or 2 2 0 orientations and with a grain size of approx. 500 A. Inclusion of these types of materials into a solar cell configuration will be discussed.  相似文献   

14.
The electrical and photoelectrical characteristics of the a-Si : H/c-Si (p-type) structure are measured. The structure is analysed as a Schottky diode in which the a-Si : H is considered as a diffusion barrier layer. The conventional h.f. CV theory is simplified and adapted to the analysis, which allows to estimate the initial band bending at the c-Si interface, the built-in electric field in the a-Si : H layer and the differential density of the a-Si : H/c-Si interface states.  相似文献   

15.
We fabricated hydrogenated microcrystalline silicon (μc-Si:H) solar cells on SnO2 coated glass using a seed layer insertion technique. Since rich hydrogen atoms from the μc-Si:H deposition process degrade the SnO2 layer, we applied p-type hydrogenated amorphous silicon (p-a-Si:H) as a window layer. To grow the μc-Si:H layer on the p-a-Si:H window layer, we developed a seed layer insertion method. We inserted the seed layer between the p-a-Si:H layer and intrinsic bulk μc-Si:H. This seed layer consists of a thin hydrogen diluted silicon buffer layer and a naturally hydrogen profiled layer. We compared the characteristics of solar cells with and without the seed layer. When the seed layer was not applied, the fabricated cell showed the characteristics of a-Si:H solar cell whose spectral response was in a range of 400-800 nm. Using the seed layer, we achieved a μc-Si:H solar cell with performance of Voc=0.535 V, Jsc=16.0 mA/cm2, FF=0.667, and conversion efficiency=5.7% without any back reflector. The spectral response was in the range of 400-1100 nm. Also, the fabricated device has little substrate dependence, because a-Si:H has weaker substrate selectivity than μc-Si:H.  相似文献   

16.
Outstanding passivation properties for p-type crystalline silicon surfaces were obtained by using very thin n-type microcrystalline silicon (μc-Si) layers with a controlled interface structure. The n-type μc-Si layers were deposited by the RF PE-CVD method with an insertion of an ultra-thin oxide (UTO) layer or an n-type amorphous silicon (a-Si : H) interface layer. The effective surface recombination velocity (SRV) obtained was very small and comparable to that obtained using thermal oxides prepared at 1000°C. The structural studies by HRTEM and Raman measurements suggest that the presence of UTO produces a very thin a-Si : H layer under the μc-Si. A crystal lattice discontinuity caused by these interface layers is the key to a small SRV.  相似文献   

17.
The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the opencircuit voltage (Voc) of up to 0.732 V.  相似文献   

18.
In this work we analyzed the crystallinity of hydrogenated amorphous Si thin films deposited on n-type Si substrates using the effective medium approximation (EMA) method of a spectroscopic ellipsometer (SE) and evaluated their passivation quality by measuring effective carrier lifetime (τeff) and implied Voc using quasi-steady-state photo conductance decay (QSSPC) simultaneously. The crystalline volume fraction of doped a-Si:H layers using RF-PECVD was controlled from ∼0% (nearly full amorphous phase) to above 90% (nearly polycrystalline phase) through varying deposition conditions. The passivation property depended on the crystallinity more strongly for p-a-Si:H than n-a-Si:H of which crystallinity was more sensitive to deposition rate relatively. The implied Voc above 650 mV was achieved with crystallinity less than about 5% for p-a-Si:H and 20% for n-a-Si:H. The HRTEM images confirmed the reliability of SE analysis with EMA modeling and showed the maximum part of crystalline phase exists at the interface of a-Si:H and c-Si in the form of epitaxial growth configuration. By the optimization of each a-Si:H deposition conditions 17.17% the cell efficiency was accomplished on non-textured substrate.  相似文献   

19.
In the present paper we present results on a-Si:H/a-Si:H stacked cells deposited in a single-chamber reactor by the very high frequency-glow discharge (VHF-GD) deposition technique at 70 MHz. Hydrogen dilution of the i-layer yields more stable amorphous p-i-n solar cells, similar to what is observed for RF deposition. High dilution ratios of the i-layer are found to enhance contaminations. This is, for the single-chamber reactor, due to the etching effect of the highly reactive H2-plasma. Additionally, oxygen incorporation into the i-layer is favored by the high hydrogen dilution. Different means to suppress the contaminations are employed and discussed. Regarding the stacked cell design, we show by experiment and simulation that it is important to carefully adjust the current mismatch between the component cells such as to obtain a slight top-cell-limited behavior after degradation. We present an a-Si:H/a-Si:H stacked cell with an initial efficiency of 9.8% showing only 8% relative degradation which results in a stabilized efficiency of 9%. The deposition rate of the employed H2-diluted i-layer material is 4 Å/s. It is therefore demonstrated that it is possible to make highly efficient stacked cells showing good stability also in a single-chamber system and employing the VHF technique to obtain higher rates.  相似文献   

20.
采用德国HMI研发的AFORS-HET软件模拟了N型衬底非晶硅,单晶硅异质结太阳电池的特性,结果表明随着发射层厚度的增加,短路电流下降,电池的短波响应变差.在非晶硅,单晶硅异质结界面处加入不同的界面态密度(Dit).发现当Dit1012cm-2·eV-1时,电池的开路电压和填充因子均大幅减小,导致电池效率降低.当在非晶硅,单晶硅异质结界面处加入本征非晶缓冲层后,电池性能明显改善,但是缓冲层厚度应控制在30nm以内.模拟的a-Si/i-a-Si:H/c-Si/i-a-Si:H/n a-Si双面异质结太阳电池的最高转换效率达到28.47%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号