首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文介绍用国产 IRM81T-TE1型流气式组织等效电离室和低中子灵敏度的能量补偿 G-M 计数管测定快堆裂变中子和γ射线的组织比释动能率,并用美国远西公司(FWT)1C-17A 型组织等效电离室进行了对比测量,两种电离室测量结果符合很好。  相似文献   

2.
14MeV中子吸收剂量测量   总被引:1,自引:0,他引:1  
本文叙述了用双探测器技术测定(n,r)混合场中子和光子剂量分量的方法。在窄束~(60)Coγ辐射场中对电离室进行了γ刻度并给出结果。计算了组织等效电离室的k_T值。用铅减弱法测定了碳电离室、铝电离室和GM-2计数管的k_U值。在T(d,n)~He中子场中实验测定了各项修正因子,最后给出了自由空气中生物组织的中子和光子比释动能分量的测量结果以及总不确定度。  相似文献   

3.
设计了一种用于测量γ辐射场的高气压差分电离室。采用双电离室、单输出的探头结构和添加铅屏蔽体相结合的方法,实现了强γ辐射场中特定方位γ辐射信号的差分测量技术。通过蒙特卡罗模拟和试验测试,在探头外包裹锡带的探测器获得了较好的能量响应线性。同时,还介绍了与差分电离室相配套的弱信号放大电路的设计。  相似文献   

4.
用于中子吸收剂量测量的组织等效电离室   总被引:1,自引:0,他引:1  
研制了几种不同结构的1 cm~3收集体积的气流式组织等效电离室,其室壁和收集极用自制的组织等效导电塑料制作。对电离室进行了一系列性能实验,包括:饱和特性、漏电流、极性效应、电流稳定时间、电流读数重复性、方向响应和光子能量响应等。为比较超见,对美国 FWTIC-17A型组织等效电离室也同时进行了测试。曾将我们的电离室与 FWT 电离室置于 d T 中子场和裂变中子场中进行了比对性测量,所得结果在实验误差范围内一致。所研制的一个球形电离室还送请英国 NPL 进行测试、比对,在 NPL 低散射 d T 中子场中与 EGG 组织等效电离室比对的结果表明,两者符合很好。总的看来,所研制的电离室的性能是良好的。  相似文献   

5.
在n-γ混合场中,普遍采用双探测器测量生物组织的中于吸收剂量。当用组织等效电离室(T)和光子剂量计(U)组合,测量中子吸收剂量(D_n)和伴随的γ剂量(D_γ)时,将有如下方程组:  相似文献   

6.
电离室由于其具有结构简单、使用方便的特点,目前仍被广泛应用于辐射监测领域。用于X、γ射线测量时,必须研究电离室的能量响应,并通过能响补偿使其灵敏度在一定的误差范围内是与入射X、γ射线的能量无关的常数。利用蒙特卡罗方法,模拟计算了圆柱形电离室对X、γ射线的灵敏度和能量响应;并根据计算结果的规律,对圆柱形电离室的能量响应进行了补偿,给出了补偿参数的最优范围。  相似文献   

7.
本文研究了BPT型指形TE-TE和Me-Ar电离室的特性。在由T(d,n)~4He反应产生的混合场中,对电离室的各项修正因子进行了实验测定与计算。TE-TE电离室500 V的饱和修正因子为1.007;Mg-Ar电离室200V的饱和修正因子为1.017。在15MeV中子场中应用双电离室方法测定了葡萄糖和FBX溶液体系(硫酸亚铁—苯甲酸—二甲酚橙)中的吸收剂量。确定了样品中中子吸收剂量与γ射线吸收剂量的比值。并给出了在混合场中中子吸收剂量测量不确定度为±6.3%。  相似文献   

8.
测定中子、γ混合场中中子剂量D_n和γ剂量D_g的常用方法是双剂量计法,即用一个含氢剂量计(以下以T表示)和一个不含氢剂量计(以下以U表示)。前者一般采用组织等效电离室,而后者则使用GM管探头以及石墨或镁、铝电离室等。根据ICRU-26号报告,在混合辐射场中,两个剂量计的相对响应(即响应与对用于定度的γ射线灵敏度之比)R_T和R_U分别为  相似文献   

9.
引言在环境γ辐射监测中,要求监测仪器具有足够高的灵敏度、良好的能量响应与角响应,及抗干扰能力强、统计起伏小、功耗低、携带方便等要求。我们对闪烁探测器在环境γ辐射照射量率测量中的应用开展了研制工作,本文对其工作原理、样机性能、及实际应用结果予以介绍。原理简述测量γ辐射场照射量率的基本方法是测量自由空气电离室的电离电流。对低水平环境γ辐射照射量率测量、大都采用高气压电离室以提高探测灵敏度。  相似文献   

10.
本文叙述了组织等效电离室和铝电离室的光子灵敏度和照射量因子的测定方法,并给出了测量结果。在不确定度范围内,实验值与标称值一致。  相似文献   

11.
It is shown that pulse-height spectra acquired from a high-pressure$hbox Xe+ ^3!hbox He$gas ionization chamber exposed to mixed gamma-neutron radiation fields can be unfolded into separate gamma ray and thermal neutron spectra. The procedure takes advantage of the unique shape of the recently discovered spectral response of thermal neutrons in this high pressure$hbox Xe+ ^3!hbox He$mixture. A template spectrum formed from only the pulse-height distribution of neutron signals is subtracted from the combined gamma and neutron spectrum to provide an estimate for the count of thermal neutrons. This procedure leaves a pure gamma spectrum for standard gamma ray spectrum analyses and isotope identification.  相似文献   

12.
The radiation tolerance testing of materials or opto-electronic components in a nuclear reactor requires a careful determination of the different components of the mixed gamma-neutron field. While the characterization of the neutron field can be performed using, for example, activation foils and validated by Monte-Carlo computation codes, the experimental measurement of the in-reactor gamma dose rate requires the use of costly ionization chambers. In this paper, we evaluate the possibility of using Red Perspex from Harwell Technologies for routine gamma dosimetry in mixed gamma neutron field. Self-powered gamma detectors and ionization chambers were used as reference dosimeters. We show that the accuracy of the Red 4034 dosimeters is better than 10% in mixed gamma-neutron fields.  相似文献   

13.
"核-光转换"中子探测器是以惰性气体为介质将裂变碎片能量转换为光辐射的裂变室,拥有电离探测器所没有的优点:不需要供电电源;信号传输方式采用光导或光纤,而不是绝缘电缆;对伽马辐射极不灵敏;输出信号较大,可以避免在探测器附近使用前置放大器。根据"核-光转换"中子测量系统的特点,采用Geant4模拟了铀裂变靶厚度、惰性气体成分、腔体材料等对到达惰性气体的裂变碎片和可见光的影响,给出了NOC结构设计的最佳参数和中子能量响应。  相似文献   

14.
对组织等效正比计数器(TEPC)的方法原理和性能进行了初步研究,在此基础上,建立了1套TEPC测量系统,用于测量中子、γ混合辐射场的吸收剂量及剂量当量。中子辐射场通常伴随有γ辐射。根据对混合辐射场测量得到的微剂量谱,将γ辐射的剂量贡献部分从中子辐射中区分出来。依据具体实验环境,使用蒙特卡罗方法进行了模拟计算。计算结果与实验数据取得较好的一致性,从而验证所建立的TEPC测量中子辐射场吸收剂量的方法是可行的。  相似文献   

15.
In order to ascertain the accuracy and applicability of the method which was developed in the previous paper for evaluating the dose equivalent in a single-burst and mixed radiation field, a comparison with two other ones has been carried out. One is based on the measurement of the neutron energy spectrum with TOF system and the separate measurement of the absorbed doses with twin chambers. In the other, a tissue-equivalent proportional counter is used for measuring the LET distribution of the absorbed dose. The average quality factor has been evaluated in a pulsed and mixed field generated by an electron linear accelerator. A good agreement has been found among these methods.

A problem about the experimental determination of the dose equivalent index has also been discussed. It was pointed out that the average quality factor as a function of the depth in tissue could be regarded as characteristic of the mixed radiation field.  相似文献   

16.
Monte Carlo simulation of a detector response function presents a very challenging problem. The detector response functions have been calculated for different neutron and gamma detectors: 3He gas filled proportional counter, NE213 organic scintillator, BrillanCe 350 or LaCl3(Tl), and an ionization chamber with mixed gas composition. MCNPX code was used for simulations. The simulations were done with different neutron and gamma energies. The effects of neutron scattering, wall effects, recoil continua and contribution from charged particles have been included. The detector response function for the NE213 organic scintillator was obtained with consideration of light output curves of different products of neutron reactions with materials of the scintillator. The simulated data has been compared with experiments.  相似文献   

17.
用蒙特卡罗方法模拟计算高气压电离室对60Co和137Cs源的空气吸收剂量率因子,并在标准参考辐射场中进行对应刻度。计算和刻度结果表明:对137Cs点源,高气压电离室空气吸收剂量率因子的计算值与刻度值间的相对偏差为0.65%;对60Co点源,两者之间的相对偏差为-5.5%。计算值与刻度值在不确定度内一致。  相似文献   

18.
介绍了基于复合理论的组织等效电离室的设计原理,利用该原理设计的区域中子、γ剂量当量仪可使用1个探头间接测量周围剂量当量、吸收剂量和品质因子。利用加速器和标准辐射场对该装置进行测试,测试结果表明,该装置对于中子和γ辐射场,尤其是对于高能γ、热能至几十MeV的中子具有较好的能量响应和较高的灵敏度,在剂量率高于几十μSv/h时,测量不确定度可控制在±50%以内。该系统可为存在中子、γ辐射场的场所提供必要的测量手段和监控技术。  相似文献   

19.
The paper describes a calibration of the new instrumentation and control (I&C) at the VR-1 training reactor in Prague. The I&C uses uncompensated fission chambers for the power measurement that operate in a pulse or a DC current and a Campbell regime, according to the reactor power. The pulse regime uses discrimination for the avoidance of gamma and noise influence of the measurement. The DC current regime employs a logarithmic amplifier to cover the whole reactor DC current power range with only one electronic circuit. The system computer calculates the real power from the logarithmic data. The Campbell regime is based on evaluation of the root mean square (RMS) value of the neutron noise. The calculated power from Campbell range is based on the square value of the RMS neutron noise data. All data for the power calculation are stored in computer flash memories. To set proper data there, it was necessary to carry out the calibration of the I&C. At first, the proper discrimination value was found while examining the spectrum of the neutron signal from the chamber. The constants for the DC current and Campbell calculations were determined from an independent reactor power measurement. The independent power measuring system that was used for the calibration was accomplished by a compensated current chamber with an electrometer. The calculated calibration constants were stored in the computer flash memories, and the calibrated system was again successfully compared with the independent power measuring system. Finally, proper gamma discrimination of the Campbell system was carefully checked.  相似文献   

20.
In the ATLAS muon spectrometer, large drift-tube chambers are used for precision tracking. The chambers will be operated at a high neutron and /spl gamma/ background resulting in count rates of up to 500 Hz cm/sup -2/ corresponding to 300 kHz per tube. The spatial resolution of the drift tubes is degraded from 82 /spl mu/m without background to 108 /spl mu/m at 500 Hz cm/sup -2/ background count rate. Due to afterpulsing in the Ar/CO/sub 2/ gas mixture used in the drift tubes, ionizing radiation causes more than one hit in a tube within the maximum drift time of about 800 ns which is expected for magnetic field strengths around 1.2 T. In order to limit the count rate, the drift tubes are read out with an artificial dead time of 790 ns which causes an efficiency loss of 23% at a rate of 300 kHz per tube. The space-to-drift-time relationship of the tubes varies with background rate, temperature, and magnetic field strength. The mean magnetic field strength in a muon chamber is 0.4 T on the average, but may vary by up to 0.4 T within a chamber. The space-to-drift-time relationship must therefore be determined in short time intervals with an accuracy better than 20 /spl mu/m using muon tracks and applying corrections for measured magnetic field variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号