首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 40-Gb/s transimpedance amplifier (TIA) is realized in 0.18-mum CMOS technology. From the measured S-parameters, a transimpedance gain of 51 dBOmega and a 3-dB bandwidth up to 30.5 GHz were observed. A bandwidth enhancement technique, pi-type inductor peaking (PIP), is proposed to achieve a bandwidth enhancement ratio (BWER) of 3.31. In addition, the PIP topology used at the input stage decreases the noise current as the operation frequency increases. Under a 1.8 V supply voltage, the TIA consumes 60.1 mW with a chip area of 1.17 X 0.46 mm2. The proposed CMOS TIA presents a gain-bandwidth product per DC power figure of merit (GBP/Pde) of 180.1 GHzOmega/mW.  相似文献   

2.
This paper describes a novel low-power low-noise CMOS voltage-current feedback transimpedance amplifier design using a low-cost Agilent 0.5-/spl mu/m 3M1P CMOS process technology. Theoretical foundations for this transimpedance amplifier by way of gain, bandwidth and noise analysis are developed. The bandwidth of the amplifier was extended using the inductive peaking technique, and, simulation results indicated a -3-dB bandwidth of 3.5 GHz with a transimpedance gain of /spl ap/60 dBohms. The dynamic range of the amplifier was wide enough to enable an output peak-to-peak voltage swing of around 400 mV for a test input current swing of 100 /spl mu/A. The output noise voltage spectral density was 12 nV//spl radic/Hz (with a peak of /spl ap/25 nV//spl radic/Hz), while the input-referred noise current spectral density was below 20 pA//spl radic/Hz within the amplifier frequency band. The amplifier consumes only around 5 mA from a 3.3-V power supply. A test chip implementing the transimpedance amplifier was also fabricated using the low-cost CMOS process.  相似文献   

3.
Li  M. Hayes-Gill  B. Harrison  I. 《Electronics letters》2006,42(22):1278-1279
A high-speed transimpedance amplifier (TIA) has been designed and implemented in a low cost 0.35 mum CMOS technology. Combining the techniques of regulated cascode input stage, current shunt feedback and inductive-series peaking, the TIA achieves a transimpedance gain of 51 dBOmega and 3 dB bandwidth of 6 GHz, in the presence of a photodiode capacitance of 0.6 pF. This is believed to be the fastest TIA ever reported in 0.35 mum CMOS technology  相似文献   

4.
The realization of a complete low cost CMOS optical fiber link using a LED and PIN as optical components is presented. The driver and receiver are realized in a standard 0.8 μm digital CMOS process which makes integration with a DSP possible. The driver is a current steering transistor combined with a small quiescent current source. The modulation current is 60 mA which allows a 155 Mb/s optical data-rate. The receiver is a three-stage transimpedance amplifier followed by a signal converter which provides digital output signal levels. The three-stage configuration makes possible the realization of a high transimpedance (150 kΩ), necessary to obtain a high sensitivity, combined with a high bandwidth. The achieved optical data-rate is 240 Mb/s for 1 μA input modulation currents. This results in a transimpedance bandwidth of 18 THzΩ, which is one order of magnitude higher than recently published circuits. The speed performance of the total link is limited by the optical time-constant of the LED, leading to a 155 Mb/s optical link, designed for use in four-fiber interboard connections in 622 Mb/s B-ISDN systems  相似文献   

5.
Integrated CMOS transimpedance (TZ) amplifier circuits have been designed and fabricated based on a home-made BSIM model. A 0.35 μm CMOS technology was used for circuit realisation, and a capacitive-peaking design to improve the bandwidth of the TZ amplifier is proposed and investigated. Using this approach provides an easy way to improve the performance of the TZ amplifier; the measured 3 dB bandwidth is enhanced from 875 MHz to 1.35 GHz. The CMOS TZ amplifier design achieves a 2 Gbit/s data rate  相似文献   

6.
This brief presents a bandwidth enhancement technique that is applicable to gigahertz-range broadband circuits. Using the inductance enhancement technique proposed in this brief, a 2.5-Gb/s transimpedance amplifier (TIA) has been implemented based on a 0.35-/spl mu/m CMOS technology. With the input noise reduction, the TIA with the proposed active inductor loads improves the overall system performances including more that 90% increase in bandwidth. Measurements show the bandwidth of 1.73 GHz, transimpedance gain of 68 dB/spl Omega/, and the averaged input referred noise current of 3.3 pA//spl radic/Hz, respectively, while dissipating 50 mW of dc power.  相似文献   

7.
2.5Gb/Scmos光接收机跨阻前置放大器   总被引:6,自引:0,他引:6  
给出了一种利用0.35μm CMOS工艺实现的2.5Gb/s跨阻前置放大器。此跨阻放大器的增益为59 dB*Ω,3dB带宽为2GHz,2GHz处的等效输入电流噪声为0.8×10-22 A2/Hz。在标准的5V电源电压下,功耗为250mW。PCML单端输出信号电压摆幅为200mVp-p。整个芯片面积为1.0mm×1.1mm。  相似文献   

8.
分析各种结构前置放大器性能的基础上,给出了一个应用于2.5 Gbit/s光纤通信系统的,基于CMOS工艺的共栅结构跨阻放大器。为了减小输入等效噪声电流和提高带宽,采用了有源反馈和有源电感代替传统结构中的电阻反馈。测试结果表明,该电路具有61.8 dB的跨阻增益,2.01 GHz的带宽,输入等效噪声电流为9.5 pA/Hz~(1/2),核心电路功耗仅为3.02 mW。  相似文献   

9.
A fully differential wideband CMOS transimpedance amplifier is presented. Simulation results of different inductive peaking configurations are shown. Measured performances give a 19 GHz bandwidth and 45 dB/spl Omega/ transimpedance gain at 6.5 mW power consumption.  相似文献   

10.
A zero-pole cancellation transimpedance amplifier (TIA) has been realized in 0.35 μm RF CMOS tech nology for Gigabit Ethernet applications. The TIA exploits a zero-pole cancellation configuration to isolate the input parasitic capacitance including photodiode capacitance from bandwidth deterioration. Simulation results show that the proposed TIA has a bandwidth of 1.9 GHz and a transimpedance gain of 65 dB·Ω for 1.5 pF photodiode capaci tance, with a gain-bandwidth product of 3.4 THz·Ω. Even with 2 pF photodiode capacitance, the bandwidth exhibits a decline of only 300 MHz, confirming the mechanism of the zero-pole cancellation configuration. The input resis tance is 50 Ω, and the average input noise current spectral density is 9.7 pA/(Hz)~(1/2). Testing results shows that the eye diagram at 1 Gb/s is wide open. The chip dissipates 17 mW under a single 3.3 V supply.  相似文献   

11.
A transimpedance amplifier (TIA) has been realized in a 0.6-/spl mu/m digital CMOS technology for Gigabit Ethernet applications. The amplifier exploits the regulated cascode (RGC) configuration as the input stage, thus achieving as large effective input transconductance as that of Si Bipolar or GaAs MESFET. The RGC input configuration isolates the input parasitic capacitance including photodiode capacitance from the bandwidth determination better than common-gate TIA. Test chips were electrically measured on a FR-4 PC board, demonstrating transimpedance gain of 58 dB/spl Omega/ and -3-dB bandwidth of 950 MHz for 0.5-pF photodiode capacitance. Even with 1-pF photodiode capacitance, the measured bandwidth exhibits only 90-MHz difference, confirming the mechanism of the RGC configuration. In addition, the noise measurements show average noise current spectral density of 6.3 pA//spl radic/(Hz) and sensitivity of -20-dBm for a bit-error rate of 10/sup -12/. The chip core dissipates 85 mW from a single 5-V supply.  相似文献   

12.
In this paper, we present a CMOS preamplifier for use with magnetoresistive (MR) read elements in disk drives. The performance of the CMOS design is competitive with the more expensive current generation of BiCMOS MR preamplifiers. The measured gain for the preamplifier is 43 dB and the measured 3-dB bandwidth is greater than 273 MHz corresponding to a 455-Mb/s data rate. Likewise, the measured input-referred voltage noise is less than 0.57 nV/√Hz, and measured input-referred current noise is less than 10.54 pA/√Hz at an MR bias current of 10 mA, The preamplifier has been implemented in a 0.8-μm 5 V CMOS process and occupies a die area of 1.78×1.78 mm 2 In this paper, we introduce a new scheme to reduce current noise below that contributed by a single MOS device, This technique has the potential for even more impact for future submicron processes. We also showed that voltage amplifiers offer lower noise than transimpedance amplifiers for similar gain and bandwidth constraints  相似文献   

13.
设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 mVpp的差分电压信号。该全差分前置放大电路采用0.18 m CMOS工艺进行设计,当光电二极管电容为250 fF时,该光接收机前置放大电路的跨阻增益为92 dB,-3 dB带宽为7.9 GHz,平均等效输入噪声电流谱密度约为23 pA/(0~8 GHz)。该电路采用电源电压为1.8 V时,跨阻放大器功耗为28 mW,限幅放大器功耗为80 mW,输出缓冲器功耗为40 mW,其芯片面积为800 m1 700 m。  相似文献   

14.
A 1-Gb/s differential transimpedance amplifier (TIA) is realized in a 0.25-/spl mu/m standard CMOS technology, incorporating the regulated cascode input configuration. The TIA chip is then integrated with a p-i-n photodiode on an oxidized phosphorous-silicon (OPS) substrate by employing the multichip-on-oxide (MCO) technology. The MCO TIA demonstrates 80-dB/spl Omega/ transimpedance gain, 670-MHz bandwidth for 1-pF photodiode capacitance, 0.54-/spl mu/A average input noise current, -17-dBm sensitivity for 10/sup -12/ bit-error rate (BER), and 27-mW power dissipation from a single 2.5-V supply. It also shows negligible switching noise effect from an embedded VCO on the OPS substrate. Furthermore, a four-channel MCO TIA array is implemented for optical interconnects, resulting in less than -40-dB crosstalk between adjacent channels.  相似文献   

15.
A tunable transimpedance amplifier (TIA) is presented in this letter. By incorporating a mechanism for gain and bandwidth tuning, the TIA can be adjusted to achieve optimum circuit performance with a lowest bit-error-rate (BER) for high-speed applications. The proposed circuit is implemented in a 0.18-mum CMOS process. Consuming a dc power of 34mW from a 2.0-V supply voltage, the fabricated TIA exhibits a variable -3-dB bandwidth from 3.9 to 7.6GHz while maintaining a transimpedance gain of 52dBOmega. With a 7.5-Gb/s 231-1 pseudo-random bit sequence, the measured input sensitivity of the TIA is -19 dBm at a BER of 10-12  相似文献   

16.
In this paper, a novel bandwidth enhancement technique based on the combination of capacitive degeneration, broad-band matching network, and the regulated cascode (RGC) input stage is proposed and analyzed, which turns the transimpedance amplifier (TIA) design into a fifth-order low-pass filter with Butterworth response. This broad-band design methodology for TIAs is presented with an example implemented in CHRT 0.18-mum 1.8-V RF CMOS technology. Measurement data shows a -3-dB bandwidth of about 8 GHz with 0.25-pF photodiode capacitance. Comparing with the core RGC TIA without capacitive degeneration and broad-band matching network, this design achieves an overall bandwidth enhancement ratio of 3.6 with very small gain ripple. The transimpedance gain is 53 dBOmega with a group delay of 80plusmn20 ps. The chip consumes only 13.5-mW dc power and the measured average input-referred noise current spectral density is 18 pA/radicHz up to 10 GHz  相似文献   

17.
A shunt series feedback transimpedance amplifier (TIA), based on a current amplifier using a zero–pole cancellation, followed by a 6 stages limiting amplifier (LA), proves to be suitable as receiver front-end for a 8 Gb/s communications over fiber optic. The front-end is realized with a 0.18 μm CMOS technology, and shows the following performances: the TIA has a 50 dBΩ transimpedance gain and 5.5 GHz bandwidth, the LA has a 46 dB gain and 7.9 GHz bandwidth. The differential voltage swing at the output is 300 mV. The total power consumption is 112 mW.  相似文献   

18.
文章提出了一种基于调节型共源共栅电路结构(RGC)的跨阻放大器,采用0.5μm的标准互补型金属氧化物半导体(CMOS)工艺进行设计,仿真。测试结果表明,该电路具有69.93dB的跨阻增益,830MHz的-3dB带宽。在输入电流为1μA时,其输出电压的动态摆幅达到4.5mV,在5V电源电压下功耗仅为63.16mW。  相似文献   

19.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

20.
We present a high-speed monolithically integrated optical receiver fabricated with 0.13-mum standard complementary metal-oxide-semiconductor (CMOS) technology. The optical receiver consists of a CMOS-compatible avalanche photodetector (CMOS-APD) and a transimpedance amplifier (TIA). The CMOS-APD provides high responsivity as well as large bandwidth. Its bandwidth is further enhanced by the TIA having negative capacitance, which compensates undesired parasitic capacitance. With the CMOS integrated optical receiver, 4.25-Gb/s optical data are successfully transmitted with a bit-error rate less than 10-12 at the incident optical power of - 5.5 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号