共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
橡胶增韧环氧树脂低温韧性的研究 总被引:13,自引:0,他引:13
以低分子量聚酰胺(PA300)为固化剂,以液体端羧基丁腈橡胶(CTBN)为增韧剂增韧改性双酚A型环氧树脂,考察了橡胶增韧剂、固化剂、稀释剂和无机填料对环氧树脂低温韧性的影响。通过对增韧体系应力应变特性和动态力学性能的研究表明,该体系具有优异的低温韧性。 相似文献
3.
通过示差扫描量热仪、力学性能测试及电镜分析等研究了端羧基丁腈橡胶(CTBN)和核壳橡胶(CSR)增韧改性环氧树脂(EP)体系的结构与增韧改性效果,结果表明:CTBN和CSR都能显著提高环氧树脂的冲击强度,CSR增韧环氧体系的拉伸强度及弯曲强度增幅较大。CTBN的加入使环氧树脂的玻璃化温度大幅下降,EP/CSR体系的Tg也有所降低,但随CSR含量的增加又有回升的趋势。CTBN的加入对环氧体系的固化起到了抑制作用,体系的凝胶化时间明显变长;而CSR的加入对环氧体系的固化影响不大。比较而言,CSR增韧环氧体系的综合性能更佳。 相似文献
4.
5.
橡胶弹性体增韧环氧树脂的研究进展 总被引:1,自引:0,他引:1
综述了环氧树脂增韧改性的研究现状,详细介绍了丁晴橡胶、丙烯酸酯橡胶和聚氨酯弹性体增韧环氧树脂的研究进展,展望了橡胶弹性体增韧环氧树脂的前号。 相似文献
6.
7.
本文研究了全硫化纳米羧基丁腈橡胶(VP-501)对环氧树脂性能的影响。采用红外光谱分析、力学性能测试、差式扫描量热仪、动态力学分析、扫描电子显微镜等测试方法。比较添加纳米羧基丁腈橡胶前后环氧树脂浇注体的力学性能、固化动力学、动态力学性能、以及拉伸断面微观形貌的不同。结果表明VP-501的加入使得环氧树脂浇注体拉伸弯曲性能在不明显降低的情况下冲击性能大幅度提高,玻璃化转变温度(Tg)提高,拉伸断裂面形貌由光滑变粗糙,纳米粒子较均匀地分散在树脂体系中,达到了增韧的效果。 相似文献
8.
橡胶增韧环氧树脂的新方法 总被引:3,自引:1,他引:2
本文讨论了液体端羧基丁腈橡胶增韧环氧树脂存在橡胶交联网络不完整问题,并进一步研究为克服此缺点而使用预制的橡胶微球(即活性微凝胶)作为环氧增韧剂的体系的表面化学性质、流变学性能、及以伯胺类固化剂固化的此体系的胶接强度及力学性能等。 相似文献
9.
10.
端羟基聚丁二烯橡胶增韧环氧树脂的研究 总被引:4,自引:0,他引:4
研究了端羟基聚丁二烯(HTPB)液态橡胶对环氧树脂的增韧作用。实验证明,HTPB对环氧树脂有较好的增韧效果,特别是具有良好的抗低温开裂性能。从相分离和动态力学分析的角度对其进行了讨论,还对HTPB与端羟—端羧聚丁二烯(HCTPB)的增韧作用进行了比较。 相似文献
11.
12.
13.
14.
15.
聚脲基氨酯增强增韧环氧树脂的研究 总被引:3,自引:0,他引:3
用原位多相聚合法合成了聚脲基氨酯/环氧树脂互穿聚合物网络(IPN),测定了产物的力学性能和热性能。探讨了IPN中聚脲基氨酯含量对环氧树脂增韧过程的影响,结果表明,对于N,N-二甲基苄胺固化体系,加入12.0phr的聚脲基氨酯,在不降低其热稳定性的同时,可使环氧树脂冲击强度提高35%左右,拉伸强度提高12%~15%;对于4,4'-二氨基二苯砜或4,4'-二氨基二苯甲烷固化体系,加入12.0phr的聚脲基氨酯可使环氧树脂冲击强度提高92%左右,拉伸强度提高20%~24%。 相似文献
16.
综述了弹性体与无机纳米粒子协同增韧改性环氧树脂以及纳米弹性体粒子增韧环氧树脂的应用进展,并且对纳米技术在弹性体增韧环氧树脂中的应用进行了展望。 相似文献
17.
18.
Bao‐Long Zhang Guang‐Liang Tang Ke‐Yu Shi Ying‐Cai You Zong‐Jie Du Ji‐Fu Huang 《应用聚合物科学杂志》1999,71(1):177-184
A series of novel reactive toughening agents (LCEUPPG) containing both a flexible spacer and rigid liquid crystalline unit were synthesized to modify the bisphenol epoxy resin/dicyandiamide curing system. The curing reactivity, apparent activation energy, curing mechanism, dynamic mechanical behavior, and impact strength of the modified system were systematically studied. Compared with the unmodified system, the results indicate that LCEUPPG have greatly accelerated the curing reaction between epoxy resin and dicyandiamide, reduced the apparent activation energy of the curing reaction, enhanced the impact strength 3–7 times, and maintained high dynamic modulus and good thermal properties. In addition, SEM observation of the fracture surfaces showed a two‐phase microstructure in the modified systems. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 177–184, 1999 相似文献