首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
尼龙6增韧研究进展   总被引:11,自引:0,他引:11  
综述了用聚烯烃、橡胶弹性体、无机刚性粒子及ABS等对尼龙6进行增韧的研究进展情况,其中以聚烯烃、橡胶弹性体的应用最为广泛,但需要一定的相容剂;而无机刚性粒子增韧则是一种较新的增韧方法,可以在提高材料韧性的同时,提高材料的拉伸强度;ABS与尼龙6共混可获得较理想的综合性能。  相似文献   

2.
PA6增韧改性研究进展   总被引:2,自引:0,他引:2  
介绍了PA6树脂的特性及优缺点,并对PA6的增韧改性方法进行了综述,其中以聚烯烃、橡胶弹性体应用最为广泛;而无机刚性粒子增韧PA6则是一种较新的增韧方法,在提高材料韧性的同时,可提高材料的其他力学性能。  相似文献   

3.
霍丽  姜巧娟 《广州化工》2014,(19):19-21
探讨了国内外尼龙材料增韧研究的现状,目前尼龙材料增韧主要集中于以下几个方面:用尼龙与弹性体共混制备超韧尼龙,包括聚烯烃类弹性体增韧尼龙,苯乙烯类嵌段共聚物增韧尼龙,核-壳型冲击改性剂增韧尼龙,以及离聚物为增容剂增韧尼龙;无机刚性粒子增韧尼龙,能在提高材料的抗冲击性能的同时,保证不降低其拉伸强度和刚性;有机刚性粒子增韧尼龙。  相似文献   

4.
成果转让     
聚烯烃用增韧母粒聚烯烃是产量高、增长快的一类通用塑料 ,刚性差和韧性低是影响聚烯烃材料在工程上应用的关键因素 ,因此需要对聚烯烃材料进行增强和增韧的改性。橡胶增韧聚合物的方法在增韧的同时 ,往往造成聚合物材料刚性的下降 ,最近提出的无机刚性粒子增韧聚合物的方法可以达到同时增强增韧聚合物的目的。我们将无机刚性粒子增韧聚合物的研究新结果应用到增韧母粒的研制中 ,使这类增韧母粒可以同时改善聚烯烃材料的韧性和刚性 (见下表 )。表 母粒填充PP与未改性PP的力学性能对比 性  能均聚PP母粒填充均聚PP共聚PP母粒填…  相似文献   

5.
尼龙增韧改性的研究进展   总被引:2,自引:0,他引:2  
综述了国内外尼龙增韧改性的研究进展,介绍了尼龙增韧机理的研究进展,并从不同方面对尼龙的增韧进行了探讨,例如"壳-核"共聚物增韧尼龙、聚烯烃弹性体增韧尼龙、有机刚性粒子增韧尼龙以及无机非弹性体增韧尼龙。  相似文献   

6.
聚酰胺增韧改性研究进展   总被引:3,自引:0,他引:3  
综述了国内外聚酰胺增韧改性的研究状况 ,包括添加聚烯烃、工程塑料、无机刚性粒子增韧和尼龙之间的自增韧 ,其中聚烯烃弹性体增韧应用得最为广泛 ,但需要一定的相容剂 ,工程塑料增韧和尼龙之间的自增韧可以得到较理想的效果 ,而无机刚性粒子增韧是一种较新的增韧方法 ,它可以在提高韧性的同时 ,使拉伸强度得到提高。同时阐述了与不同的增韧改性方法相对应的增韧机理  相似文献   

7.
综述了国内外聚酰胺增韧改性的研究状况,包括添加聚烯烃、工程塑料、无机刚性粒子增韧和尼龙之间的自增韧,其中聚烯烃弹性体增韧应用得最为广泛,但需要一定的相容性、,工程塑料增韧和尼龙之间的自增韧可以得到较理想的效果,而无机刚性粒子增韧是一种较新的增韧方法,它可以在提高韧性的同时,使位伸强度得到提高。同时阐述了与不同的增韧性改性方法相对应的增韧机理。  相似文献   

8.
热塑性弹性体增韧聚丙烯(PP)材料在常温下显示橡胶的弹性,在高温状态下可采用树脂的方式进行加工,因加工方式简便,扩展了PP材料在工程领域的应用。从单一弹性体增韧、弹性体协同增韧、刚性粒子/弹性体协同增韧、成核剂/弹性体协同增韧几方面对热塑性弹性体增韧PP材料进行阐述,并指出弹性体协同增韧、刚性粒子/弹性体协同增韧、成核剂/弹性体协同增韧将是今后的发展方向,新型的动态硫化加工技术及设备也是今后的研发重点。  相似文献   

9.
非弹性体增韧高分子材料的研究进展   总被引:2,自引:0,他引:2  
对近些年来热塑性树脂增韧体系、核壳粒子增韧体系、液晶高聚物增韧体系及无机刚性粒子增韧体系等增韧高分子材料的研究进展进行了综述。指出非弹性体增韧拓展了高分子材料增韧改性研究的新领域;纳米粒子增韧开辟了高分子材料的研究新方向。  相似文献   

10.
利用非弹性体可以使一些韧性较差的高分子材料达到有效增韧的目的,从热塑性塑料增韧体系、核壳粒子增韧体系、液晶高聚物增韧体系及无机刚性粒子增韧体系等方面分别进行了概述。综述了近年来科研工作者对非弹性体增韧高分子材料的研究进展状况。  相似文献   

11.
综述了近些年来无机刚性粒子增韧聚丙烯(PP)的结构设计、刚性粒子粒径及其分布、改性剂种类及用量对增韧增强效果的影响以及无机刚性粒子增韧PP的机理。大量的研究表明,在刚性粒子增韧PP中,弹性体包覆刚性粒子的壳一核结构设计具有优异的增韧效果。在定量分析PP增韧机理方面,介绍了脆韧转变分析中界面黏结判据和粒间距判据,以及有限元方法在此领域的应用,刚性粒子增韧机理主要为界面脱黏到空洞/银纹化损伤和空洞/剪切屈服损伤的转变。此外还介绍了目前刚性粒子与橡胶混杂增韧PP的研究进展。  相似文献   

12.
Except by elastomers, the toughness of nylon‐6 (N‐6) can be improved by the addition of rigid poly(styrene‐co‐maleic anhydride) (SMA). In this case, strength and stiffness are also enhanced. Combination of SMA with maleated ethylene‐propylene rubber or styrene‐ethene/butene‐styrene with a total content below 15% gives a ternary blend having a toughness level close to elastomer toughening, whereas the strength and stiffness reached at least the Nylon‐6 values. An explanation is a synergistic combination of both elastomer and rigid polymer toughening mechanisms. An opposite effect on mechanical behavior was found with high contents of both additives. Except for worsened strength and stiffness, in some cases, a higher elastomer content even did not enhance the toughness. This effect can be explained by too fine phase structure found, causing the matrix ligament dimension to be below its minimum critical value. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1404–1411, 1999  相似文献   

13.
聚丙烯增韧研究最新进展   总被引:3,自引:2,他引:1  
系统论述了国内外有关PP增韧改性的研究进展。分别介绍了弹性体或橡胶、热塑性塑料、刚性粒子、刚性粒子协同弹性体、纤维对PP增韧改性的研究现状以及对聚丙烯力学性能、热性能、流变性能的影响,重点介绍了刚性粒子以及刚性粒子协同弹性体对PP的改性研究。刚性粒子协同弹性体能够避免弹性体增韧PP加工上的困难和刚性体在基体中易形成缺陷等问题,充分发挥两者的优势,在对PP增韧改性研究方面具有很大潜力。  相似文献   

14.
聚丙烯增韧改性最新进展   总被引:7,自引:0,他引:7  
聚丙烯(PP)脆性高、缺口冲击强度低,特别在低温时尤为严重,其增韧改性是扩大PP使用范围的重要方法。综述近2年增韧PP的最新研究进展,介绍橡胶或弹性体共混增韧、热塑性塑料增韧、无机刚性粒子增韧、纳米粒子增韧及晶须增韧PP的最新研究情况。重点介绍了纳米粒子增韧PP的研究,并且指出纳米粒子/弹性体协同增韧PP将是未来PP增韧改性的主要研究方向。  相似文献   

15.
聚丙烯共混增韧研究进展   总被引:4,自引:1,他引:4  
从塑料增韧聚丙烯(PP)体系,橡胶或热塑性弹性体增韧PP体系、PP/弹性体/塑料三元共混体系以及无机刚性粒子增韧PP体系4个方面详细论述了国内外PP共混增韧改性的研究进展。采用塑料类作为改性剂增专心PP,虽可增韧,但是由于体系的不相容性,往往要大量使用改性剂或添加相容剂。使用橡胶或者热塑性弹性体与PP共混增韧效果最为明显,但由于随着弹性体用量的增加,体系在冲击强度大幅度提高的同时也出现了刚性等性能的损失。PP弹性体/塑料三元共混体系可均衡改善力学性能及降低成本。此外,还就近年发展起来的无机刚性粒子增韧PP的研究工作进展和机理研究情况作了介绍。  相似文献   

16.
尼龙基复合材料的增韧和增强   总被引:3,自引:0,他引:3  
采用合适的界面改性剂,并对高岭土表面改性,研制的高岭土/尼龙6复合体系,达到了既增韧又增强的目的;以马来酸酐接枝聚乙烯和三元乙丙橡胶为界面相容剂,研制的尼龙6/聚烯烃共混物,提高了冲击强度,降低了吸水率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号