首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

2.
When one considers the fine-scale spread of an epidemic, one usually knows the sources of biological variability and their qualitative effect on the epidemic process. The force of infection on a susceptible unit depends on the locations and the strengths of the infectious units, and on the environmental and intrinsic factors affecting infectivity and/or susceptibility. The infection probability for the susceptible unit can then be modelled as a function of these factors. Thus, one can build a conceptual model at the fine scale. However, the epidemic is generally observed at a larger scale and one has to build a model adapted to this larger scale. But how can the sources of variation identified at the fine scale be integrated into the model at the larger scale? To answer this question, we present, in the context of plant epidemiology, a multi-scale approach which consists of defining a base model built at the fine scale and upscaling it to match the scale of the sampling and the data. This approach will enable comparing experiments involving different observational processes.  相似文献   

3.
Pregnancy and associated pre‐eclampsia carry a high maternal risk in hemodialysis patients, yet no guidelines on how to monitor these patients' cardiovascular function exist. A 34‐year‐old hemodialysis patient presented with peripartum cardiomyopathy after a late second trimester miscarriage. On cardiac magnetic resonance imaging, diagnostic features of left ventricular noncompaction were apparent. Yet, histological and gene panel analyses remained negative. Upon stringent dry weight control and pharmacological heart failure therapy, the pathological changes showed complete regression. As pregnant hemodialysis patients have an excessively increased risk for pre‐eclampsia‐related cardiac disease, thorough screening appears valuable in these patients.  相似文献   

4.
5.
Mathematical modelling is a widely used technique for describing the temporal behaviour of biological systems. One of the most challenging topics in computational systems biology is the calibration of non‐linear models; i.e. the estimation of their unknown parameters. The state‐of‐the‐art methods in this field are the frequentist and Bayesian approaches. For both of them, the performance and accuracy of results greatly depend on the sampling technique employed. Here, the authors test a novel Bayesian procedure for parameter estimation, called conditional robust calibration (CRC), comparing two different sampling techniques: uniform and logarithmic Latin hypercube sampling. CRC is an iterative algorithm based on parameter space sampling and on the estimation of parameter density functions. They apply CRC with both sampling strategies to the three ordinary differential equations (ODEs) models of increasing complexity. They obtain a more precise and reliable solution through logarithmically spaced samples.Inspec keywords: sampling methods, parameter estimation, Bayes methods, differential equations, iterative methodsOther keywords: CRC, parameter space sampling, parameter density functions, sampling strategies, ordinary differential equations models, logarithmically spaced samples, computational systems biology, mathematical modelling, temporal behaviour, biological systems, challenging topics, nonlinear models, unknown parameters, frequentist approaches, Bayesian approaches, sampling technique, novel Bayesian procedure, parameter estimation, called conditional robust calibration, different sampling techniques  相似文献   

6.
The finite element analysis of delamination in laminated composites is addressed using interface elements and an interface damage law. The principles of linear elastic fracture mechanics are indirectly used by equating, in the case of single‐mode delamination, the area underneath the traction/relative displacement curve to the critical energy release rate of the mode under examination. For mixed‐mode delamination an interaction model is used which can fulfil various fracture criteria proposed in the literature. It is then shown that the model can be recast in the framework of a more general damage mechanics theory. Numerical results are presented for the analyses of a double cantilever beam specimen and for a problem involving multiple delamination for which comparisons are made with experimental results. Issues related with the numerical solution of the non‐linear problem of the delamination are discussed, such as the influence of the interface strength on the convergence properties and the final results, the optimal choice of the iterative matrix in the predictor and the number of integration points in the interface elements. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a multi-scale analysis scheme for solidification based on two-scale computational homogenization is discussed. Solidification problems involve evolution of surfaces coupled with flux jump boundary conditions across interfaces. We provide consistent macro-micro transition and averaging rules based on Hill’s macro- homogeneity condition. The overall macro-scale behavior is analyzed with solidification at the micro-scale modeled using an enthalpy formulation. The method is versatile in the sense that two different models can be employed at the macro- and micro-scales. The micro-scale model can incorporate all the physics associated with solidification including moving interfaces and flux discontinuities, while the macro-scale model needs to only model thermal conduction using continuous (homogenized) fields. The convergence behavior of the tightly coupled macro-micro finite element scheme with respect to decreasing element size is analyzed by comparing with a known analytical solution of the Stefan problem.  相似文献   

8.
9.
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

10.
A multiscale computational framework is presented that provides a coupled self‐consistent system of equations involving molecular mechanics at small scales and quasi‐continuum mechanics at large scales. The proposed method permits simultaneous resolution of quasi‐continuum and atomistic length scales and the associated displacement fields in a unified manner. Interatomic interactions are incorporated into the method through a set of analytical equations that contain nanoscale‐based material moduli. These material moduli are defined via internal variables that are functions of the local atomic configuration parameters. Point defects like vacancy defects in nanomaterials perturb the atomic structure locally and generate localized force fields. Formation energy of vacancy is evaluated via interatomic potentials and minimization of this energy leads to nanoscale force fields around defects. These nanoscale force fields are then employed in the multiscale method to solve for the localized displacement fields in the vicinity of vacancies and defects. The finite element method that is developed based on the hierarchical multiscale framework furnishes a two‐level statement of the problem. It concurrently feeds information at the molecular scale, formulated in terms of the nanoscale material moduli, into the quasi‐continuum equations. Representative numerical examples are shown to validate the model and demonstrate its range of applicability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanism of bitemporal hemianopia is still unclear. Previous research suggested that the nerve fiber packing pattern may contribute to the selective damage of nasal (crossed) nerve fibers. Numerical models were built using finite element modeling to study the biomechanics of optic nerve fibers. The sensitivity of the mechanical behaviors of the nerve fibers to variations of five parameters in the nerve fiber model were investigated using design of experiments (DOE). Results show that the crossing angle is a very significant factor that affects a wide range of responses of the model. The strain difference between the crossed and the uncrossed nerve fibers may account for the phenomenon of bitemporal hemianopia. This work also highlights the need for more accurate material properties of the tissues in the model and an improved understanding of the microstructure of the optic chiasm.  相似文献   

12.
The response of E-Glass/Vinyl ester curved composite panels subjected to underwater explosive loading has been studied. The work consists of experimental testing utilizing a water filled conical shock tube facility and computational simulations with the commercially available Ls-Dyna finite element code. The composite specimens are 0/90 biaxial laminates with a thickness of approximately 1.3 mm. The samples are round panels with curved midsections. The transient response of the plates is measured using a three-dimensional (3D) Digital Image Correlation (DIC) system, along with high speed photography. This ultra high speed system records full field shape and displacement profiles in real time. The DIC data and the computational results show a high level of correlation using the Russell error measure.  相似文献   

13.
Descriptive models of creative design: application to an example   总被引:10,自引:0,他引:10  
Nigel Cross 《Design Studies》1997,18(4):427-440
  相似文献   

14.
A reduced‐order model for structures involving poroelastic materials is proposed in this paper. The approach is based on a separation of the solid and fluid phases of the porous material into separate substructures. For each individual substructure, a decoupled normal mode basis is considered, from which a set of vectors for the decomposition is selected. The preserved modes are completed by an additional family to correct for the influence of the static response of the non‐preserved. It is shown that the only neglected phenomenons in the model are the inertia of the non‐preserved modes and part of their intercoupling. The following three features render the proposed scheme computationally attractive: (i) real valued matrices are involved in the transformations; (ii) the assembly of complex, frequency dependent matrices is only performed at the stage of solving for a particular frequency; and (iii) the number of normal modes required are selected using a novel method. The computational efficacy is demonstrated, on a simple but realistic 3D case, through numerical results obtained using a reduced number of DOFs, showing a significant reduction of computational cost compared with traditional methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Dopant implantation, followed by spike annealing is one of the main focus areas in the simulation of silicon processing due to its ability to form highly-activated ultra-shallow junctions. Coupled with the growing interest in the use of silicon-on-insulator (SOI) wafers, modelling and simulation of the influence of SOI structure on damage evolution and ultra-shallow junction formation on one hand, and on electrical MOSFET device characteristics on the other hand, are required.In this work, physically-based models of dopant implantation and diffusion, including amorphization, defect interactions and evolution, as well as dopant-defect interactions in both bulk silicon and SOI are integrated within a unique simulation tool to model the different physical mechanisms involved in the process of ultra-shallow junction formation.The application to 65 nm SOI MOSFET devices demonstrated the strong impact of the process simulation models on the simulated electrical device characteristics, in particular for both defect evolution and defect dopant interaction with the additional silicon/buried oxide (Si/BOX) interface. Simulation results of the threshold voltage (Vth) and the variation of the on- and off-state currents of the explored structures are in good agreement with experimental data and can provide important insight for optimizing the process in both bulk silicon and SOI technologies.  相似文献   

16.
《Advanced Powder Technology》2019,30(12):3241-3252
Collision dynamics of wet particles are often investigated in literature, since their knowledge is important for the design and modeling of granular process involving liquid layers or moisture. Several models were already reported predicting rebound behavior of wet particles. However, most of them are either developed for a viscous dominant regime, neglecting capillary effects all together, or capillary effects are strongly simplified. This work summarizes the various models and compares them to new experimental results for liquids at small and moderate viscosities, to check for applicability also for these materials. Several discrepancies between experiments at small liquid viscosities and models were found and reasons for these differences are discussed. Mainly, the negligence or simplification of capillary forces regarding energy dissipation during the collision leads to an overprediction of rebound velocities compared to the experiments reported in this work. Furthermore, selection of appropriate models for viscous forces during wet particle collisions has to be conducted with care.  相似文献   

17.
The buckling properties of thin-walled structures are sensitive to different sources of imperfections, among which the geometric imperfections are of paramount importance. This work contributes to the methodology of shell buckling analysis with respect to the following aspects: first, we propose an isogeometric analysis framework for the buckling analysis of shell structures which naturally eliminates the geometric discretization errors; second, we introduce a parameter-free Nitsche-type formulation for thin shells at large deformations that weakly enforces coupling constraints along trimmed boundaries. In combination with the finite cell method, the proposed conceptual modeling and analysis framework is able to handle engineering-related shell structures; and third, we introduce a NURBS modeling of measured geometric imperfection fields, which is much closer to the true imperfection shape compared to the classically used faceted FE models. We demonstrate with a number of benchmark problems and engineering models that our proposed framework is able to fully compete with established and highly sophisticated finite element formulations but at a significant higher level of accuracy and reliability of the analysis results.  相似文献   

18.
19.
Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号