首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

2.
When one considers the fine-scale spread of an epidemic, one usually knows the sources of biological variability and their qualitative effect on the epidemic process. The force of infection on a susceptible unit depends on the locations and the strengths of the infectious units, and on the environmental and intrinsic factors affecting infectivity and/or susceptibility. The infection probability for the susceptible unit can then be modelled as a function of these factors. Thus, one can build a conceptual model at the fine scale. However, the epidemic is generally observed at a larger scale and one has to build a model adapted to this larger scale. But how can the sources of variation identified at the fine scale be integrated into the model at the larger scale? To answer this question, we present, in the context of plant epidemiology, a multi-scale approach which consists of defining a base model built at the fine scale and upscaling it to match the scale of the sampling and the data. This approach will enable comparing experiments involving different observational processes.  相似文献   

3.
4.
The finite element analysis of delamination in laminated composites is addressed using interface elements and an interface damage law. The principles of linear elastic fracture mechanics are indirectly used by equating, in the case of single‐mode delamination, the area underneath the traction/relative displacement curve to the critical energy release rate of the mode under examination. For mixed‐mode delamination an interaction model is used which can fulfil various fracture criteria proposed in the literature. It is then shown that the model can be recast in the framework of a more general damage mechanics theory. Numerical results are presented for the analyses of a double cantilever beam specimen and for a problem involving multiple delamination for which comparisons are made with experimental results. Issues related with the numerical solution of the non‐linear problem of the delamination are discussed, such as the influence of the interface strength on the convergence properties and the final results, the optimal choice of the iterative matrix in the predictor and the number of integration points in the interface elements. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a multi-scale analysis scheme for solidification based on two-scale computational homogenization is discussed. Solidification problems involve evolution of surfaces coupled with flux jump boundary conditions across interfaces. We provide consistent macro-micro transition and averaging rules based on Hill’s macro- homogeneity condition. The overall macro-scale behavior is analyzed with solidification at the micro-scale modeled using an enthalpy formulation. The method is versatile in the sense that two different models can be employed at the macro- and micro-scales. The micro-scale model can incorporate all the physics associated with solidification including moving interfaces and flux discontinuities, while the macro-scale model needs to only model thermal conduction using continuous (homogenized) fields. The convergence behavior of the tightly coupled macro-micro finite element scheme with respect to decreasing element size is analyzed by comparing with a known analytical solution of the Stefan problem.  相似文献   

6.
7.
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

8.
A multiscale computational framework is presented that provides a coupled self‐consistent system of equations involving molecular mechanics at small scales and quasi‐continuum mechanics at large scales. The proposed method permits simultaneous resolution of quasi‐continuum and atomistic length scales and the associated displacement fields in a unified manner. Interatomic interactions are incorporated into the method through a set of analytical equations that contain nanoscale‐based material moduli. These material moduli are defined via internal variables that are functions of the local atomic configuration parameters. Point defects like vacancy defects in nanomaterials perturb the atomic structure locally and generate localized force fields. Formation energy of vacancy is evaluated via interatomic potentials and minimization of this energy leads to nanoscale force fields around defects. These nanoscale force fields are then employed in the multiscale method to solve for the localized displacement fields in the vicinity of vacancies and defects. The finite element method that is developed based on the hierarchical multiscale framework furnishes a two‐level statement of the problem. It concurrently feeds information at the molecular scale, formulated in terms of the nanoscale material moduli, into the quasi‐continuum equations. Representative numerical examples are shown to validate the model and demonstrate its range of applicability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The response of E-Glass/Vinyl ester curved composite panels subjected to underwater explosive loading has been studied. The work consists of experimental testing utilizing a water filled conical shock tube facility and computational simulations with the commercially available Ls-Dyna finite element code. The composite specimens are 0/90 biaxial laminates with a thickness of approximately 1.3 mm. The samples are round panels with curved midsections. The transient response of the plates is measured using a three-dimensional (3D) Digital Image Correlation (DIC) system, along with high speed photography. This ultra high speed system records full field shape and displacement profiles in real time. The DIC data and the computational results show a high level of correlation using the Russell error measure.  相似文献   

10.
Descriptive models of creative design: application to an example   总被引:10,自引:0,他引:10  
Nigel Cross 《Design Studies》1997,18(4):427-440
  相似文献   

11.
A reduced‐order model for structures involving poroelastic materials is proposed in this paper. The approach is based on a separation of the solid and fluid phases of the porous material into separate substructures. For each individual substructure, a decoupled normal mode basis is considered, from which a set of vectors for the decomposition is selected. The preserved modes are completed by an additional family to correct for the influence of the static response of the non‐preserved. It is shown that the only neglected phenomenons in the model are the inertia of the non‐preserved modes and part of their intercoupling. The following three features render the proposed scheme computationally attractive: (i) real valued matrices are involved in the transformations; (ii) the assembly of complex, frequency dependent matrices is only performed at the stage of solving for a particular frequency; and (iii) the number of normal modes required are selected using a novel method. The computational efficacy is demonstrated, on a simple but realistic 3D case, through numerical results obtained using a reduced number of DOFs, showing a significant reduction of computational cost compared with traditional methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Dopant implantation, followed by spike annealing is one of the main focus areas in the simulation of silicon processing due to its ability to form highly-activated ultra-shallow junctions. Coupled with the growing interest in the use of silicon-on-insulator (SOI) wafers, modelling and simulation of the influence of SOI structure on damage evolution and ultra-shallow junction formation on one hand, and on electrical MOSFET device characteristics on the other hand, are required.In this work, physically-based models of dopant implantation and diffusion, including amorphization, defect interactions and evolution, as well as dopant-defect interactions in both bulk silicon and SOI are integrated within a unique simulation tool to model the different physical mechanisms involved in the process of ultra-shallow junction formation.The application to 65 nm SOI MOSFET devices demonstrated the strong impact of the process simulation models on the simulated electrical device characteristics, in particular for both defect evolution and defect dopant interaction with the additional silicon/buried oxide (Si/BOX) interface. Simulation results of the threshold voltage (Vth) and the variation of the on- and off-state currents of the explored structures are in good agreement with experimental data and can provide important insight for optimizing the process in both bulk silicon and SOI technologies.  相似文献   

13.
Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.  相似文献   

14.
Steel structures like bridges, tanks and pylons are exposed to outdoor weathering conditions. In order to prevent them from corrosion they are protected by organic coating systems. This paper focuses on modelling the deterioration of the organic coating layer that protects steel structures from corrosion. Only if there is sufficient knowledge of the condition of the coating on these structures, maintenance actions can be done in the most efficient way. Therefore the course of the deterioration of the coating system and its lifetime, which is also of importance for doing maintenance, have to be assessed accurately. In this paper, three different stochastic processes, viz. Brownian motion with non-linear drift, the non-stationary gamma process and a two-stage hit-and-grow physical process, are fitted to two real data sets. In this way we are the first who compare the three stochastic processes empirically on criteria such as goodness-of-fit, computational convenience and ease of implementation. The first data set is based on expert judgement; the second consists of inspection results. In the first case the model parameters are obtained by a least-squares approach, in the second case by the method of maximum likelihood. A meta-analysis is performed on the two-stage hit-and-grow model by means of fitting Brownian motion and gamma process to the outcomes of this model.  相似文献   

15.
The duration of infection is fundamental to the epidemiological behaviour of any infectious disease, but remains one of the most poorly understood aspects of malaria. In endemic areas, the malaria parasite Plasmodium falciparum can cause both acute, severe infections and asymptomatic, chronic infections through its interaction with the host immune system. Frequent superinfection and massive parasite genetic diversity make it extremely difficult to accurately measure the distribution of infection lengths, complicating the estimation of basic epidemiological parameters and the prediction of the impact of interventions. Mathematical models have qualitatively reproduced parasite dynamics early during infection, but reproducing long-lived chronic infections remains much more challenging. Here, we construct a model of infection dynamics to examine the consequences of common biological assumptions for the generation of chronicity and the impact of co-infection. We find that although a combination of host and parasite heterogeneities are capable of generating chronic infections, they do so only under restricted parameter choices. Furthermore, under biologically plausible assumptions, co-infection of parasite genotypes can alter the course of infection of both the resident and co-infecting strain in complex non-intuitive ways. We outline the most important puzzles for within-host models of malaria arising from our analysis, and their implications for malaria epidemiology and control.  相似文献   

16.
French-speaking ergonomists generally consider the concept of activity to be central in their approach to work and to changing it. However, their understanding of the term developed in a specific context, combining the influence of Soviet psychology with that of other forms of thinking already developed in France. Since then, the notion has received considerable input. The concept of activity as it has been developed in French-speaking countries (and thereafter in others like Brazil as it has spread) is not exactly identical to that developed by Engeström, even if there are obviously many common points. The aim of this article is not to make a systematic international comparison of approaches all referring to the concept of activity. Rather, the author's objective is limited to explaining the emergence of the concept as it is taught in France with its theoretical and methodological consequences. The reader should, therefore, not be unduly surprised by the focus on French-speaking ergonomists; this is not testimony to ignorance of the international literature, but constitutes the specific nature of this essay. If other authors attempt a similar clarification of thought at a later date, it will be easier for the international ergonomic community to distinguish the resemblances and differences between the approaches on an international level.  相似文献   

17.
We present a new statistical approach to analyse epidemic time-series data. A major difficulty for inference is that (i) the latent transmission process is partially observed and (ii) observed quantities are further aggregated temporally. We develop a data augmentation strategy to tackle these problems and introduce a diffusion process that mimics the susceptible-infectious-removed (SIR) epidemic process, but that is more tractable analytically. While methods based on discrete-time models require epidemic and data collection processes to have similar time scales, our approach, based on a continuous-time model, is free of such constraint. Using simulated data, we found that all parameters of the SIR model, including the generation time, were estimated accurately if the observation interval was less than 2.5 times the generation time of the disease. Previous discrete-time TSIR models have been unable to estimate generation times, given that they assume the generation time is equal to the observation interval. However, we were unable to estimate the generation time of measles accurately from historical data. This indicates that simple models assuming homogenous mixing (even with age structure) of the type which are standard in mathematical epidemiology miss key features of epidemics in large populations.  相似文献   

18.
Time integration is the numerical kernel of inelastic finite element calculations, which largely determines their accuracy and efficiency. If higher order Runge–Kutta (RK) methods, p≥3, are used for integration in a standard manner, they do not achieve full convergence order but fall back to second‐order convergence. This deficiency called order reduction is a longstanding problem in computational inelasticity. We analyze it for viscoelasticity, where the evolution equations follow ordinary differential equations. We focus on RK methods of third order. We prove that the reason for order reduction is the (standard) linear interpolation of strain to construct data at the RK‐stages within the considered time interval. We prove that quadratic interpolation of strain based on tn, tn + 1 and, additionally, tn ? 1 data implies consistency order three for total strain, viscoelastic strain and stress. Simulations applying the novel interpolation technique are in perfect agreement with the theoretical predictions. The present methodology is advantageous, since it preserves the common, staggered structure of finite element codes for inelastic stress calculation. Furthermore, it is easy to implement, the overhead of additional history data is small and the computation time to obtain a defined accuracy is considerably reduced compared with backward Euler. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The flexural response of 3D woven textile composite panels containing an edge crack is evaluated using the End Notch Flexure (ENF) test. In doing so, the effectiveness of 3D reinforcement in increasing and/or eliminating delamination is demonstrated. A finite element model of the ENF configuration using the Discrete Cohesive Zone Model (DCZM) was used to evaluate the deformation response and fracture properties corresponding to the experimental results presented in Pankow et al. (2011) [1]. A modified trapezoidal traction law was used in the DCZM to computationally evaluate the ENF test results. Good agreement between experimental results and predictions are reported, up to the point at which the crack reaches under the loading roller and damage begins to occur locally under the roller.  相似文献   

20.
This paper considers the errors that arise in using outdated accident prediction models in road safety scheme evaluation. Methods to correct for regression-to-mean (RTM) effects in scheme evaluation normally rely on the use of accident prediction models. However, because accident risk tends to decline over time, such models tend to become outdated and the estimated treatment effect is then exaggerated. A new correction procedure is described which can effectively eliminate such errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号