首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MnOx supported on γ-Al2O3, TiO2, Y-ZrO2 and SiO2 was prepared by an impregnation and a deposition-precipitation method, and their catalytic activities for the low-temperature selective catalytic reduction (SCR) of NOx with NH33 in the presence of excess O2 were examined. The catalytic activity of the catalysts prepared by a deposition-precipitation method was higher than that of catalysts prepared by an impregnation method. The activity follows in the order: MnOx/TiO2 ≈ MnOx/γ-Al2O3 > MnOx/SiO2 > MnOx/Y-ZrO2. Supported MnOx catalysts prepared by a deposition-precipitation method appeared to have an amorphous manganese oxide phase and those prepared by an impregnation method exhibited a crystalline MnO2 phase, respectively. The addition of SO2 with H2O in the feeding gas slightly deactivates the SCR activity of MnOx/TiO2 catalysts.  相似文献   

2.
In this study, the effects of TiO2 addition on the physical and photoelectrochemical properties of ZnO thin films have been investigated. The (TiO2)x–(ZnO)1−x nanocomposite thin films were dip-coated on both glass and indium tin oxide (ITO)-coated conducting glass substrates with various values of x, specifically 0, 0.05, 0.1, 0.25 and 0.5. Optical properties of the samples were studied by UV–vis spectrophotometry in the range of 300–1100 nm. The optical spectra of the nanocomposite thin films showed high transparency in the visible region. The optical bandgap energy of the (TiO2)x–(ZnO)1−x films increased slightly with increasing values of x. The crystalline structure of the nanocomposite films was investigated by X-ray diffraction, which indicated the formation of ZnO nanocrystals in the thin films with x < 0.5. Moreover, the crystallinity of the films decreased with increasing values of x. The surface chemical composition of the samples was investigated by X-ray photoelectron spectroscopy (XPS), which revealed stoichiometric ZnO and TiO2 on the surfaces of the films. The photoelectrochemical properties of the samples were also characterized using a high-pressure xenon light source and KOH electrolyte. The addition of 10 mol% (x = 0.1) TiO2 to the ZnO thin films resulted in the best photoresponse in the visible region of the solar spectrum. In addition, the effect of TiO2 concentration on the electrical properties and the flat-band potential of the (TiO2)x–(ZnO)1−x system was studied by impedance spectroscopy; x = 0.1 exhibited the highest donor density and charge-transfer resistance.  相似文献   

3.
(CaO)1–x (ZnO) x mixed oxides (x=0–1), heated at 1423 K under atmospheric conditions, were checked for their catalytic activity in the N2O decomposition in the temperature range of 450–650°C. Although the catalytic activity was measured in the dark, it was found to be linearly related with the photoluminescence intensity of the catalysts.  相似文献   

4.
The catalytic activities of Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts in the gas‐phase hydrogenolysis of glycerol were studied at 180–300 °C under 0.1 MPa of H2. Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts were prepared by the incipient wetness impregnation method. After reduction, CuO species were converted to metallic copper (Cu0). Cu/Al2O3 catalysts with high acidity, high specific surface areas and small metallic copper size favored the formation of 1,2‐propanediol with a maximum selectivity of 87.9 % at complete conversion of glycerol and a low reaction temperature of 180 °C, and favored the formation of ethylene glycol and monohydric alcohols at high reaction temperature of 300 °C. Cu/TiO2 and Cu/ZnO catalysts exhibited high catalytic activity toward the formation of hydroxyacetone with a selectivity of approx. 90 % in a wide range of reaction temperature.  相似文献   

5.
Cu–ZnO and Mn–Cu–ZnO catalysts have been prepared by electrodeposition and tested for the synthesis of higher alcohols via CO hydrogenation. The catalysts were prepared in the form of nanowires and nanotubes using a nanoporous polycarbonate membrane, which served as a template for the electrodeposition of the precursor metals from an aqueous electrolyte solution. Electrodeposition was carried out using variable amounts of Zn(NO3)2, Cu(NO3)2, Mn(NO3)2 and NH4NO3 at different galvanostatic conditions. A fixed bed reactor was used to study the reaction of CO and H2 to produce alcohols at 270 °C, 10–20 bar, H2/CO = 2/1, and 10,000–33,000 scc/h gcat. In addition to methane and CO2, methanol was the main alcohol product. The addition of manganese to the Cu–ZnO catalyst increased the selectivity toward higher alcohols by reducing methane formation; however, CO2 selectivity remained high. Maximum ethanol selectivity was 5.5%, measured as carbon efficiency.  相似文献   

6.
A series of CuO/Ce x Zr1–x O2 catalyst powders with different Ce/Zr ratio were prepared via an impregnation method and characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), H2-Temperature-programmed reduction (TPR) and X-ray photoelectron spectra techniques. The catalytic properties of the catalysts were evaluated by means of a microreactor-GC system. XRD results showed that the addition of CuO had no effect on the crystalline lattice of the support. The structures of the Ce x Zr1–x O2 samples were confirmed by XRD analyses and FT-Raman results. The H2-TPR profiles for these catalysts had three peaks, which could be attributed to the reduction of three kinds of CuO species, i.e., the highly dispersed CuO, the larger CuO species and the bulk CuO. The TPR analyses and catalytic property tests indicated that the Ce/Zr ratio of CuO/Ce x Zr1–x O2 had an effect on the dispersion degree of CuO and the catalytic activity of the catalysts.  相似文献   

7.
Ma  L.  Trimm  D.L.  Wainwright  M.S. 《Topics in Catalysis》1999,8(3-4):271-277
ZnO and Cr2O3 promoted skeletal copper catalysts have been prepared by leaching CuAl2 alloy particles in aqueous sodium hydroxide containing various concentrations of sodium zincate (Na2Zn(OH)4) (0–0.62 M), of sodium chromite (NaCrO2) (0–0.1 M) or of a mixture of sodium zincate (0.005 M) and sodium chromite (0.02 M). Both sodium zincate and sodium chromite in the caustic solution were found to affect the leaching process. The presence of sodium zincate retarded the leaching rate and enhanced the specific surface area of the catalyst but did not protect copper rearrangement on extended leaching. On the other hand, sodium chromite in the leachant did not influence the leaching rate but the leached catalyst was more stable with the structure and surface area of the skeletal copper being maintained. The activities of ZnO and Cr2O3 promoted skeletal copper catalysts for the reactions of methanol synthesis, water gas shift and methanol steam reforming were determined separately. The results indicated that deposition of both ZnO and Cr2O3 on skeletal copper catalysts significantly improved the activities for these reactions. Chromia is found to act mainly as a structural promoter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A series of perovskite catalysts have been tested for the oxidative dehydrogenation of ethane. The composition of these catalysts covered CaTi1–x Fe x O3–, with 0 x 0.4, SrTi1–x Fe x O3–, with 0 x 1.0, as well as mixtures of these. The latter catalysts containing more basic Sr metal showed higher selectivity to ethene than the former catalysts containing Ca. A few catalysts with Co on B-sites in the lattice were tested, but lost their stability above 923 K, resulting in a substantial change in the product selectivity. The perovskites gained activity when Fe was introduced in the lattice to form hypervalent ions (Fe4+) which are believed to play a role in the catalytic activity of these materials.  相似文献   

9.
Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst   总被引:1,自引:1,他引:0  
The behavior and role of ZnO in Cu/ZnO catalysts for the hydrogenations of CO and CO2 were studied using XRD, TEM coupled with EDX, TPD and FT-IR. As the reduction temperature increased, the specific activity for the hydrogenation of CO2 increased, whereas the activity for the hydrogenation of CO decreased. The EDX and XRD results definitely showed that ZnO x (x = 0–1) moieties migrate onto the Cu surface and dissolve into the Cu particle forming a Cu-Zn alloy when the Cu/ZnO catalysts were reduced at high temperatures above 600 K. The content of Zn dissolved in the Cu particles increased with reduction temperature and reached 18% at a reduction temperature of 723 K. The CO-TPD and FT-IR results suggested the presence of Cu+ sites formed in the vicinity of ZnO x on the Cu surface, where the Cu+ species were regarded as an active catalytic component for methanol synthesis.  相似文献   

10.
The La1−xKxMnO3 perovskite-type oxides whose sizes were in nanometric range were prepared by the citric acid-ligated method. The structures of these perovskite-type oxides were examined by XRD and FT-IR. The catalytic activity for the combustion of soot particulate was evaluated by a technique of the temperature-programmed reaction. In the LaMnO3 catalyst, the partial substitution of K for La at A-site enhanced the catalytic activity for the combustion of soot particle. In the La1−xKxMnO3 catalysts, the combustion temperature of soot particle decreases with increasing x values. The La1−xKxMnO3 oxides with the substitution quantity between x=0.20 and x=0.25 are good candidate catalysts for the soot particle removal reaction, and the combustion temperature of soot particle is between 285 and 430 °C when the contact of catalysts and soot is loose, and their catalytic activities for the combustion of soot particle are as good as supported Pt catalysts, which is the best catalyst system so far reported for soot combustion under loose contact conditions.  相似文献   

11.
Catalytic wet air oxidation (CWAO) of aqueous solution of phenol was carried out with pure oxygen at 160 °C in a stirred batch reactor on platinum supported oxide catalysts (Pt/CeO2c calcined at 650 and 800 °C and Pt/CexZr1 − xO2 with x = 0.90, 0.75 and 0.50). The catalysts were characterized before (BET, FT-IR spectroscopy, hydrogen chemisorptions, oxygen storage capacity (OSC)) and after reaction (TPO, elementary analysis, GC–MS and DTA–TGA). The results demonstrate a poisoning of the catalysts during CWAO reaction due to the formation of different forms of carbon deposit on the materials: carbonates and polymeric carbon species. This poisoning phenomenon is limited by the introduction of 50% of zirconium into ceria lattice for the catalysts presenting the lowest surface area. Polymeric deposits play a major role in the catalyst deactivation.  相似文献   

12.
Pd and transition metal oxides functionalized ZSM-5 single crystals with b-axis aligned mesopores (ZSM-5-OM-PdO x -MO x ) were prepared. ZSM-5-OM support was obtained from crystallization of aluminosilicate gels in the presence of cationic polymers. Characterizations indicate abundant nanopores and highly crystalline degree of ZSM-5-OM-PdO x -MO x , and active species of Pd and transition metals were homogeneously dispersed into ZSM-5-OM, which showed unique interactions and enhanced ability for activating oxygen. Catalytic tests showed that ZSM-5-OM-PdO x -MO x were highly active and reusable catalysts for selective oxidation of alcohols under aerobic and solvent free condition, which were much better than those of Pd/transition metal oxides functionalized ZSM-5, mesoporous silica of SBA-15, and activated carbon catalysts.  相似文献   

13.
Zn1−xAgxO nanoparticles (NPs) (x=0, 0.02, 0.04, and 0.06) were synthesized by a sol–gel method. The synthesized undoped ZnO and Zn1−xAgxO-NPs were characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV–visible spectroscopy. The XRD patterns indicated that undoped and Ag-doped ZnO crystallize in a hexagonal wurtzite structure. The TEM images showed ZnO NPs with nearly spherical shapes, with particle size distributed over the nanometer range. Evidence of dopant incorporation is demonstrated in the XPS measurements of the Ag-doped ZnO NPs. The Raman measurements indicated that the undoped and Ag-doped ZnO-NPs had a high crystalline quality. From the result of UV–vis, the band-gap values of prepared undoped and Ag-doped ZnO were found to decrease with an increase in Ag concentration. The obtained undoped and Ag-doped ZnO nanoparticles were used as a source material to grow undoped and Ag-doped ZnO nanowires on n-type Si substrates, using a thermal evaporation set-up. Two probe method results indicated that the Ag-doped ZnO nanowires exhibit p-type properties.  相似文献   

14.
The impact of preparation methods on the structure and catalytic behavior of Cu/ZnO/Al2O3 catalysts for H2 production from steam reforming of methanol (SRM) has been reported. The results show that the nanostructured Cu/ZnO/Al2O3 catalyst obtained by a novel gel-coprecipitation of oxalate precursors has a high specific surface area and high component dispersion, exhibiting much higher activity in the SRM reaction as compared to the catalysts prepared by conventional coprecipitation techniques. It is suggested that the superior catalytic performance of the oxalate gel-coprecipitation-derived Cu/ZnO/Al2O3 catalyst could be attributed to the generation of “catalytically active” copper material with a much higher metallic copper specific surface as well as a stronger Cu–Zn interaction due to an easier incorporation of zinc species into CuC2O4 · x H2O precursors as a consequence of isomorphous substitution between copper and zinc in the oxalate gel-precursors.  相似文献   

15.
ZnO nanostructures were synthesized by thermal evaporation of Zn powder in an oxygen and nitrogen gas environment at 1000 °C. No substrates or catalysts were used for the formation of the ZnO nanostructures. The ZnO nanostructures were synthesized inside crucibles with Zn source powder. ZnO nanoneedles began to be found at O2/N2 ratios of less than 60/40. As the O2/N2 ratio increased to 80/20, the ZnO nanostructures mainly grew in the longitudinal direction. Upon increasing the O2/N2 ratio to 100/0, the ZnO nanostructures grew mainly in the transverse direction. CL spectra showed that ZnO with a high crystalline quality was obtained at a O2/N2 ratio of 80/20.  相似文献   

16.
Hydrotalcitelike Co-Al and Ni-Al catalysts of different compositions (with the atomic ratio M 2+/Al3+ = 0.5–3.0) were studied in the reaction of selective reduction of NO by propane, propylene, and n-decane in the presence of O2. The higher activity of the catalysts with M 2+/Al3+ = 0.5 is connected with high dispersity of Ni or Co cations stabilized by a significant amount of Al3+ ions. Propylene was shown to be the most efficient reducing agent for nitrogen oxide. The highest degree of conversion to the extent of 90–99% was attained at 400 and 420–440°C for Ni-Al and Co-Al samples, respectively. When propane and decane were used as reducing agents, the conversion of both catalysts was characterized by the volcano-shaped dependence on temperature due to the fact that the catalyst took part in the concurrent reaction of hydrocarbon (reducing agent) oxidation. Hydrotalcitelike materials are promising representatives of inexpensive bi- and multicomponent systems. The design strategy for new active catalysts for processes of purification of gas exhausts from NO x , that are stable in the presence of water and sulfur oxides, may be based on usage of hydrotalcites with modified ions introduced into them.  相似文献   

17.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio.  相似文献   

18.
A series of perovskites of the formula Ca1–xSrxTi1–yMyO3– (M = Fe or Co,x = 0–1,y = 0–0.6 for Fe,y = 0–0.5 for Co) were prepared and tested as the catalyst for the oxidative coupling of methane. The catalysts were stable under the reaction conditions. The catalysts of high p-type and oxide ionic conductivity afforded the high selectivity. Some catalysts containing Co on B-sites are thermally unstable and decomposed to metal oxide components at high temperature, giving rise to synthesis gas production.  相似文献   

19.
Perovskite-type oxides, containing Pd, were prepared via a combined sol–gel and combustion synthesis method and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and BET specific surface area (SSA). Their activity as three-way catalysts for the abatement of carbon monoxide, methane and nitrogen oxides, emitted from stoichiometrically operating natural-gas-fuelled vehicles, was investigated under simulated exhaust conditions. The preparation conditions concerning the complexing agent, the use of additives and the thermal treatment of the precursor solutions, were investigated. The La0.91Mn0.85Ce0.24Pd0.05Oz and La1.034Mn0.966Pd0.05Oz phases were the most active. Their activation by high-temperature hydrothermal treatment was ascribed to the migration of Pd out of the perovskite lattice and the formation of segregated PdO. The role of Pd was crucial for the catalytic activity of the active phase. A low Pd content favored the dispersion of oxidized Pdx+, 2 ≤ x ≤ 4, and thus, enhanced catalytic activity. Oxidized Pdx+ with x > 2 appeared to be less active than Pd2+. The catalytic activity of La1.034Mn0.966Pd0.05Oz increased significantly when 8 ppm SO2 were introduced in the reaction mixture.  相似文献   

20.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号