首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly-ordered, vertically oriented TiO2 nanotubes are synthesized, and their hydrogen sensing properties are investigated. Self-organized TiO2 nanotube arrays are grown by anodic oxidation of a titanium foil in an aqueous solution that contains 1 wt% hydrofluoric acid at 20 °C. We use a potential ramp at a rate of 100 mV s−1, increasing from the initial open-circuit potential (OCP) to 20 V, and this final potential of 20 V is then held constant during the anodization process. The fabricated TiO2 nanotubes are approximately 1 μm in length and 90 nm in diameter. For the sensor measurements, two platinum pads are used as electrodes on the TiO2 nanotube arrays. The hydrogen sensing characteristics of the sensor are analyzed by measuring the sensor responses ((I − I0)/I0) in the temperature interval of 20–150 °C. We find that the sensitivity of the sensor is approximately 20 for 1000 ppm H2 exposure at room temperature, and increases with increasing temperature. The sensing mechanism of the TiO2 nanotube sensor could be explained with chemisorption of H2 on the highly active nanotube surface.  相似文献   

2.
Polyaniline (emeraldine)/anatase TiO2 nanocomposite (PA-NC) was prepared by a chemical oxidative polymerization. The thin films of PA-NC for hydrogen gas sensing application were deposited on Cu-interdigited electrodes by spin coating technique. A study on characteristics of PA-NC thin films was demonstrated by a porous cylindrical morphology. The response and response/recovery time of sensors for hydrogen gas were evaluated by the change of TiO2 wt% at environmental conditions. Resistance-sensing measurement was exhibited a high sensitivity about 1.63, a good Long-term response, low response time and recovery time about 83 s and 130 s, respectively, at 0.8 vol% hydrogen gas for PA-NC including 25% wt of anatase nanoparticles. The current–voltage characteristics of PA-NC gas sensors before and after hydrogen gas injection showed a nonlinear ohmic current. Moreover, we studied the formation of PA-NCs and their hydrogen gas sensing mechanism based on contact regions in PA-NC.  相似文献   

3.
The single-crystalline Nb2O5 nanowires with tetragonal phase structures were synthesized through thermal oxidation process. The Nb2O5 nanowires were grown along [001] orientation and formed a layer of free-standing nanowire membrane. A pair of platinum electrodes was deposited on the surface of the nanowire layer to fabricate a Pt/Nb2O5 nanowire hydrogen sensor. The Pt/Nb2O5 nanowire hydrogen sensor exhibited fast, highly-sensitive and selective hydrogen response at room temperature, which may be attributed to the hydrogen induced interface and surface effects together with the high specific surface area of the Nb2O5 nanowires.  相似文献   

4.
Highly-ordered TiO2 nanotube arrays (TNTAs) were fabricated on Ti sheets by electrochemical anodization. Uniform Pt nanoparticles with an average diameter of 3 nm could be successfully located on the TiO2 nanotubes on only one side (Pt/TNTAs) or both sides of the Ti sheet (Pt/TNTAs/Pt). Pt/TNTAs, the single-sided Pt deposited TNTAs, could be directly used to split water without a counter electrode. The hydrogen evolution rate can reach 120 μmol h−1 cm−2 in a mixed solution of 0.5 M Na2SO4 and 0.5 M ethylene glycol without any applied bias, which is six times of that by the pure TNTAs. In comparison to the traditional three electrode system, this single-sided Pt deposited TNTAs is a much more simple and efficient water splitting system. Meanwhile, the photoelectrical conversion mechanism has been investigated in detail.  相似文献   

5.
Cu(OH)2/TNAs photocatalyst was prepared by loading Cu(OH)2 nanoparticles on TiO2 nanotube arrays (TNAs) using a chemical bath deposition method. The amount of Cu(OH)2 loaded on the arrays was controlled by the repeated deposition times. The prepared catalyst was used to generate hydrogen under simulated solar light irradiation, and the results demonstrated that the hydrogen yield of Cu(OH)2/TNAs was 20.3 times that of the pure TNAs. Furthermore, the photocatalytic efficiency for hydrogen production decreased only 5.8% after five cycles, indicating that Cu(OH)2/TNAs photocatalyst showed excellent stability and reusability. This work presents an applicable and facile method to fabricate a highly active and stable photocatalyst for hydrogen production.  相似文献   

6.
Highly dispersed CuO was introduced into TiO2 nanotube (TNT) made by hydrothermal method via adsorption-calcination process or wet impregnation process, to fabricate CuO incorporated TNT photocatalysts (CuO-TNT) for hydrogen production. It was found that CuO-TNT possessed excellent hydrogen generation activity, which was constantly vigorous throughout 5 h reaction. Depending on the preparation method, hydrogen evolution rates over CuO-TNT were founded in the range of 64.2-71.6 mmol h−1 g−1catalyst, which was much higher than the benchmark P25 based photocatalysts, and even superior to some Pt/Ni incorporated TNT. This high photocatalytic activity of CuO-TNT was mainly attributed to the unique 1-D tubular structure, large BET surface area and high dispersion of copper component. Compared to wet impregnation, adsorption-calcination process was superior to produce active photocatalyst, since it was prone to produce photocatalyst with more highly dispersed CuO.  相似文献   

7.
Cu2O/Cu/TiO2 nanotube heterojunction arrays were prepared by assembling Cu@Cu2O core-shell nanoparticles on TiO2 nanotube arrays (NTAs) using a facile impregnation-reduction method. SEM and TEM results show that Cu@Cu2O plate-like nanoparticles with tens of nanometers in size are confined inside TiO2 NTAs. Only the outmost several nanometers of the nanoparticles are Cu2O and the predominant inner of the nanoparticles are Cu metals. Cu L3VV Auger spectra of Cu2O/Cu/TiO2 NTAs suggest that Cu metals are enveloped by at least several nanometers Cu2O on the surface, which further confirms the Cu@Cu2O core shell structure of Cu nanoparticles. The ability of light absorption of Cu2O/Cu/TiO2 NTAs is enhanced. The range of absorption wavelengths changes from 400 to 700 nm due to the surface plasmon response of Cu metals core and Cu2O nanoparticles shell. The photocatalytic hydrogen production rate of Cu2O/Cu/TiO2 heterojunction arrays is enhanced when compared with those of Cu2O/TiO2 NTAs and TiO2 NTAs under UV light. Moreover, a stable H2 generation property was obtained under visible light (λ gt; 400 nm). The Cu metal core is believed to play a key role in the enhancement of photocatalytic properties of Cu2O/Cu/TiO2 nanotube heterojunction arrays.  相似文献   

8.
1-D mesoporous TiO2 nanotube (TNT) with large BET surface area was successfully synthesized by a hydrothermal-calcination process, and employed for simultaneous photocatalytic H2 production and Cu2+ removal from water. Cu2+, across a wide concentration range of 8-800 ppm, was removed rapidly from water under irradiation. The removed Cu2+ then combined with TNT to produce efficient Cu incorporated TNT (Cu-TNT) photocatalyst for H2 production. Average H2 generation rate recorded across a 4 h reaction was between 15.7 and 40.2 mmol h−1 g−1catalyst, depending on initial Cu2+/Ti ratio in solution, which was optimized at 10 atom%. In addition, reduction process of Cu2+ was also a critical factor in governing H2 evolution. In comparison with P25, its large surface area and 1-D tubular structure endowed TNT with higher photocatalytic activity in both Cu2+ removal and H2 production.  相似文献   

9.
A water-splitting reactor yielding hydrogen and oxygen was designed with a titanium oxide (TiO2) nanotube array photoelectrode vertically grown on a titanium substrate. The TiO2 nanotube arrays were made by the method of anodization and annealed in an oxygen atmosphere. Hydrogen gas was collected from the reactor and the exact amount of hydrogen gas evolved from the photoanode was analyzed. The relationship between the amount of hydrogen evolution and three key factors, viz. the tube length, tube structure and crystal structure, was investigated.  相似文献   

10.
Addition of NaBF4 during anodic synthesis of TiO2 nanotube arrays (TNTAs) photocatalyst and its application for generating hydrogen from glycerol–water solution has been investigated. The TNTAs were synthesized by anodic oxidation of titanium metal in glycerol electrolyte solution containing NH4F. During the process, the NaBF4 with different concentrations were added to the solution. Annealing of the formatted TNTAs were performed at 500 °C for 3 h under 20% H2 in argon atmosphere, to produce crystalline phase photocatalyst. FESEM analysis showed that self-organized and well ordered TNTAs have range of inner diameters, wall thicknesses and lengths approximately 62–130 nm, 27 nm and 1.53 μm, respectively. FTIR analysis indicated that carbon, nitrogen and boron were incorporated into the TNTAs lattice. Refer to UV–Vis DRS and XRD analysis, the TNTAs photocatalysts prepared have the band gap range of 2.70–3.10 eV, with mostly have anatase phase. The NaBF4 addition during synthesis, resulted modified TNTAs that can reduce the recombination of photo-induced electrons-holes. Photocatalytic hydrogen production test, from glycerol–water solution, indicated that TNTAs with the addition of NaBF4 during anodic synthesis process showed higher hydrogen production comparing to the one without NaBF4 addition. Among them the TNTAs,b (with the addition 5 mM of NaBF4) showed up to 32% improvement in the hydrogen production and can be considered as the optimum condition.  相似文献   

11.
The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays (Cu2O/TNA) and their visible-light-driven photocatalytic activity for hydrogen evolution have been investigated for the first time in this work. The photocatalytic hydrogen evolution rate of the as-prepared Cu2O/TNA at the deposition potential of −0.8 V was about 42.4 times that of the pure TNA under visible light irradiation. This work demonstrated a feasible and simple electrodeposition method to fabricate an effective and recyclable visible-light-driven photocatalyst for hydrogen evolution.  相似文献   

12.
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm2 (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm2 at 1.23 VRHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation.  相似文献   

13.
A highly stable photoelectrocatalytic electrode made of CdS-modified short, robust, and highly-ordered TiO2 nanotube array for efficient visible-light hydrogen generation was prepared via sonoelectrochemical anodization and sonoelectrochemical deposition method. The short nanotube electrode possesses excellent charge separation and transfer properties, while the sonoelectrochemical deposition method improves the combination between CdS and TiO2 nanotubes, as well as the dispersion of CdS nanoparticles. Different characterization techniques were used to study the nanocomposite electrode. UV-vis absorption and photoelectrochemical measurements proved that the CdS coating extends the visible spectrum absorption and the solar spectrum-induced photocurrent response. Comparing the photoactivity of the CdS/TiO2 electrode obtained using sonoelectrochemical deposition method with others that synthesized using plain electrochemical deposition, the current density of the former electrode is ∼1.2 times higher that of the latter when biased at 0.5 V. A ∼7-fold enhancement in photocurrent response is obtained using the sonoelectrochemically fabricated CdS/TiO2 electrode in comparison with the pure TiO2 nanotube electrode. Under AM1.5 illumination the composite photoelectrode generate hydrogen at a rate of 30.3 μmol h−1 cm−2, nearly 13 times higher than that of pure titania nanotube electrode. Recycle experiments demonstrated the excellent stability and reliability of CdS/TiO2 electrode prepared by sonoelectrochemical deposition. This composite electrode, with its strong mechanical stability and excellent combination of CdS and TiO2 nanotubes, offers promising applications in visible-light-driven renewable energy generation.  相似文献   

14.
The highly ordered Ag-SrTiO3 nanotube arrays (NTAs) with uniform size were successfully synthesized by a combination of anodic oxidation, hydrothermal process and photocatalytic reduction method. X-ray photoelectron spectroscopy analysis reveals that Ag exists in the form of metallic silver, which is in good agreement with the X-ray diffraction characterization. Moreover, the UV-vis diffuse reflectance spectra indicate that Ag-SrTiO3 NTAs have a strong absorption in the visible region which is attributed to the plasmon resonance of silver nanoparticles. After Ag loading, a further improvement of the photocatalytic activity for hydrogen production was obtained. Based on the above results, a possible electron-hole transfer mechanism was also assumed.  相似文献   

15.
Single crystalline TiO2 nanorods and polycrystalline nanotubes were fabricated with same length to investigate the effects of their nanostructures on photocatalytic properties for splitting water. In order to enhance the visible light absorbance, TiO2 nanorods and nanotubes were sensitized with semiconductor nanoparticles such as CdS, CdSe, and CdS/CdSe, and compared in viewpoint of solar hydrogen generation. It was observed that single-crystalline nanorods showed superior photocatalytic properties to polycrystalline nanotubes, and also the potential level of the nanorods with rutile phase was measured as lower than that of the nanotubes with mixture of anatase and rutile. Further improvement of photo-conversion efficiency was obtained by subsequent heat treatments of the sensitized photoelectrodes. It turns out that the improvement is attributed to the improved crystallinity and the increased size of the nanoparticles during the post-annealing treatments. It was demonstrated that TiO2 nanorods with lower potential level and a single crystalline phase on FTO glass were advantageous for effective charge injection from the sensitized nanoparticles and transport without recombination lost at grain boundaries.  相似文献   

16.
The present work investigates the photoelectrochemical behavior of nanotubular N/C-TiO2 electrode for hydrogen production. Via the sonoelectrochemical anodization process of 1 h, N-containing TiO2 based nanotube arrays(N-TNT) with the length of about 650 nm were fabricated in fluoride aqueous solution added 0.25 M NH4NO3; C-containing TiO2 based nanotube arrays(C-TNT) with the length of about 2 μm were prepared in fluoride ethylene glycol solution. In virtue of the longer tubes with the larger surface areas, C-TNT can harvest more light and produce more photoactive sites than N-TNT, which also made the charge transfer resistance in C-TNT larger than that in N-TNT. Considered the more negative flat band potential of C-TNT, C-TNT has the smaller energy barrier and the better photoelectrochemical activity. It may be attributed to the appropriate defect concentration gradient owing to the modification of C element. Under UV-vis light (320-780 nm) irradiation, the average hydrogen generation rate of C-TNT was 282 μL h−1 cm−2. The surface properties and near-surface properties of the resultant electrode were synthetically analyzed by using UV-vis diffuse reflectance spectra(DRS), field emission scanning electron microscopy (FESEM), I-t curves, and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

17.
The photocatalytic hydrogen (H2) generation by the high nuclearity Co substituted polyoxometalates (POMs), K10Na12[{Co3(B-β-SiW9O33(OH))(B-β-SiW8O29 (OH)2)}2]·49H2O (abbreviated as CoPOM) was reported. Owing to the multielectron redox capabilities of the high nuclearity CoPOM, the POM showed excellent photocatalytic activities toward H2 evolution in both molecule scale (homogeneous) and composite (heterogeneous) systems. The photocatalytic activities of CoPOM were much better than H3PW12O40. UV–Vis–NIR absorption spectral, Raman spectral, cyclic voltammetric behavior and intermittent photoelectrochemical current response were used to characterize the structure of the TiO2/CoPOM composite and interaction between TiO2 and CoPOM. Analogous “Z-scheme” and “dye” sensitized mechanisms were proposed for the homogeneous and heterogeneous systems toward photocatalytic H2 evolution under solar light irradiation, respectively.  相似文献   

18.
An MOS capacitor-type hydrogen gas sensor was fabricated with the structure of Ni/SiO2/Si by using conventional silicon wafer technologies. Grown by dry oxidation at 900°C, the thickness of the SiO2 film was only 24 Å. At 150°C, comparing to another MOS capacitor with 148 Å-thick oxide and otherwise identical configurations, this sensor showed much faster response speed (the time interval to reach half of the magnitude of the steady-state signal, or t50%, was only 4 s in response to 1% H2 without deduction of the delay from the gas delivery system), as well as enhanced signal magnitude (about two times of the former for 1% H2). Based on the hydrogen-binding to the traps in the bulk SiO2, a mechanism was proposed to explain the very short response time on the device with the ultra-thin SiO2. The gate leakage in the device is also discussed. The presented sensor demonstrates a promising step in designing low-cost H2 detectors with very fast responses.  相似文献   

19.
TiO2 nanotube arrays were fabricated by sonoelectrochemical anodic oxidation and calcined in nitrogen, air, or 5% hydrogen/nitrogen which was denoted as TNT-A, TNT-N, and TNT-H, respectively. All annealed TiO2 nanotube arrays samples exhibited similar surface morphology. With UV illumination (365 ± 15 nm), the photocurrent density of the TNT-A, TNT-N and TNT-H was about 0.27 mA/cm2, 0.45 mA/cm2 and 0.60 mA/cm2, respectively. The trapped electron at the Ti4+ center of TiO2 nanotube arrays shows absorption at around 500-700 nm. From the XPS measurement, it was found that annealing in 5% hydrogen/nitrogen helped the sample obtain a greater defect density. Because of the reduction of Ti4+ and the formation of oxygen vacancies, the charge transfer resistance appeared in this order: TNT-A > TNT-N > TNT-H. Thus TNT-H harvested the greatest charge carrier density of 9.86 × 1020 cm−3, TNT-N and TNT-A obtained a charge carrier density of 1.38 × 1020 cm−3 and 1.06 × 1020 cm−3, respectively. Accordingly, the hydrogen production rate by water splitting over TNT-A, TNT-N and TNT-H (320-780 nm irradiation, 3 h) was about 120 μL/h cm2, 159 μL/h cm2 and 231 μL/h cm2, respectively.  相似文献   

20.
Mesoporous Bi2O3/TiO2−xNx nanocomposites (BiNT) were synthesized by soft chemical template free homogeneous co-precipitation technique. XRD, XPS, TEM, UV-Vis DRS and photoluminescence studies were adapted to determine the structural, electronic and optical properties. The photocatalytic activities of the catalysts were evaluated for water splitting to generate clean hydrogen fuel under visible light irradiation (λ ≥ 400 nm). BiNT-400 catalyst showed highest results towards hydrogen production (198.4 μmol/h) with an apparent quantum efficiency of 4.3%. The pronounced activity of BiNT-400 sample towards hydrogen production was well consistent with high crystallinity, large surface area, proper excitation by N doping and Bi2O3 sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号