首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the performances of two double-chamber microbial fuel cells (MFCs) at 25 °C and 15 °C. After successful startup, the cell temperature of MFC A was decreased from 25 to 15 °C, yielding a sudden breakdown of the entire system. Conversely, the MFC B, started up at 15 °C, delivering higher power density at 25 °C than MFC A at the same temperature. The electrochemical analysis revealed that the MFC B had lower anodic resistance than MFC A. Additionally, a negative temperature dependence of the polarization resistances of the anodic biofilm was noted, a novel phenomenon only reported in this double-chambered study. Microbial analysis showed that the psychrophilic bacteria were enriched in anodic biofilms of MFC B, which likely contributed to the robust cell performance of the present double-chambered MFCs.  相似文献   

2.
Microbial electrolysis cells (MECs) could be integrated with dark fermentative hydrogen production to increase the overall system yield of hydrogen. The influence of catholyte pH on hydrogen production from MECs and associated parameters such as electrode potentials (vs Ag/AgCl), COD reduction, current density and quantity of acid needed to control pH in the cathode of an MEC were investigated. Acetate (10 mM, HRT 9 h, 24 °C, pH 7) was used as the substrate in a two chamber MEC operated at 600 mV and 850 mV applied voltage. The effect of catholyte pH on current density was more significant at an applied voltage of 600 mV than at 850 mV. The highest hydrogen production rate was obtained at 850 mV, pH 5 amounting to 200 cm3stp/lanode/day (coulombic efficiency 60%, cathodic hydrogen recovery 45%, H2 yield 1.1 mol/mol acetate converted and a COD reduction of 30.5%). Within the range (18.5–49.4 °C) of temperatures tested, 30 °C was found to be optimal for hydrogen production in the system tested, with the performance of the reactor being reduced at higher temperatures. These results show that an optimum temperature (approximately 30 °C) exists for MEC and that lower pH in the cathode chamber improves hydrogen production and may be needed if potentials applied to MECs are to be minimised.  相似文献   

3.
Practical applications of microbial fuel cells (MFCs) for wastewater treatment are usually operated over a wide range of temperature, especially day–night temperature difference. Here, MFCs at alternating temperatures were compared with those at constant temperatures. MFCs at 6/18 °C reached a steady-state voltage of 0.41 ± 0.05 V at 6 °C and 0.36 ± 0.04 V at 18 °C, which were lower than that of MFCs at 18/30 °C (0.42 ± 0.01 V at 18 °C and 0.47 ± 0.02 V at 30 °C). MFCs at 18/30 °C produced the highest power density of 2169 ± 82 mW m−2 at 30 °C, even higher than that of MFCs at constant temperature 30 °C. Moreover, MFCs at 6/18 °C and 18/30 °C obtained a comparable coulombic efficiencies (94.6 ± 5.2%, 83.2 ± 4.1%, respectively) compared with MFCs at constant temperatures (86.3 ± 7.3% at 18 °C and 84.1 ± 5.5% at 30 °C). These results demonstrate that MFCs could be successfully adapted for use under day–night temperature difference conditions.  相似文献   

4.
The two-chamber microbial fuel cell (MFC) was operated in batch mode, using acclimated hydrogen-producing mixed bacteria as the anodic inoculum, artificial sucrose wastewater as the substrate (sucrose concentration 10.0 g/L). The performance of the MFC was analyzed at different anodic pH microenvironments, such as the initial pH of the anolyte of 8.57, 7.3, 7.0 and 6.0, respectively, while anodic pH-controlled of 7.3 and 7.0. It showed that the best performance was obtained when the MFC was carried out at anodic pH-controlled of 7.3. Taking the interaction of factors into consideration, we adopted response surface methodology (RSM) to investigate the effects of sucrose concentration, operating temperature and ferrous sulfate concentration on the performance of MFC. The optimum condition for maximum output voltage of the two-chamber MFC (external resistance 1000 Ω) was thus obtained.  相似文献   

5.
At high electrical current regime power overshoot may occur in microbial fuel cell (MFC) operation with both cell voltage and electrical current declining at reduced external loads. This study demonstrated the power overshoot in a two-chamber MFC using acetate and oxygen respectively as anodic and cathodic fuels. The cell worked well until reaching 0.51 V and 790 mA/m2 at power density of 400 mW/m2; further reducing external load leads to decrease in both cell voltage and generated current. During the noted power overshoot regime the internal resistance of MFC increased monotonically with decreasing external load. Based on the electrochemical analysis of anodic and cathodic losses, the occurrence of power overshoot is proposed to be determined by the combined resistance of intracellular loss and of extracellular electron transfer (EET) loss.  相似文献   

6.
Three types of aerobic bacteria such as Citrobacter freundii, Proteus mirabilis and Bacillus subtilis were evaluated in terms of bioelectricity production using double chambered microbial fuel cell (MFC) with graphite cloth as anode and cathode and Nafion membrane as proton exchange membrane (PEM). Performance of MFC was studied with addition of glucose. Cyclic voltammetry (CV) experiments showed the presence of peaks at −92 and −163 mV vs Ag/AgCl for C. freundii and P. mirabilis indicating their electrochemical activity without an external mediator. Potential time experiments showed the potential of MFC solely depend on change in anode potential rather than cathode potential. The internal resistance of MFC containing B. subtilis was lower than C. freundii and P. mirabilis. Fuel cell performance was evaluated employing polarization curve and power output along with cell potentials. MFC containing B. subtilis with neutral red mediator showed current output of 112 mA m−2 at external resistance of 0.3 kΩ which is higher than the current outputs from MFC containing C. freundii and P. mirabilis. The relative efficiency of power generation observed in aerobic microenvironment may be attributed to the effective substrate oxidation and good biofilm growth observed on the anodic surface.  相似文献   

7.
Most dark fermentation (DF) studies had resorted to above-ambient temperatures to maximize hydrogen yield, without due consideration of the net energy gain. In this study, literature data on fermentative hydrogen production from glucose, sucrose, and organic wastes were compiled to evaluate the benefit of higher fermentation temperatures in terms of net energy gain. This evaluation showed that the improvement in hydrogen yield at higher temperatures is not justified as the net energy gain not only declined with increase of temperature, but also was mostly negative when the fermentation temperature exceeded 25 °C. To maximize the net energy gain of DF, the following two options for recovering additional energy from the end products and to determine the optimal fermentation temperature were evaluated: methane production via anaerobic digestion (AD); and direct electricity production via microbial fuel cells (MFC). Based on net energy gain, it is concluded that DF has to be operated at near-ambient temperatures for the net energy gain to be positive; and DF + MFC can result in higher net energy gain at any temperature than DF or DF + AD.  相似文献   

8.
A double-chamber self pH-buffer microbial fuel cell (MFC) was used to investigate the effect of dissolved oxygen (DO) concentration on cathodic nitrification coupled with anodic denitrification MFC. It was found that nitrogen and COD removal, electricity generation were positively correlated with DO concentration in the cathode chamber. When total inorganic nitrogen of influent was 202.51 ± 7.82 mg/L at DO 6.8 mg/L, the maximum voltage output was 282 mV and the maximum power density was 149.76 mW/m2. After 82 h operation, the highest removal rate of total inorganic nitrogen was 91.71 ± 0.38%. Electrochemical impedance spectroscopy (EIS) test showed that the internal resistance of the reactor with different DO concentration was related to the diffusion internal resistance. The data of bacterial analysis in the cathode chamber revealed that there were not only ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but also a large number of exoelectrogens. Compared with the traditional biological denitrification and related MFC denitrification research, this method does not need pH-buffer solution and external circulation device through the anion exchange membrane (AEM). It can generate electricity and remove nitrogen simultaneously, and the oxygen utilization rate in the cathode can also be enhanced.  相似文献   

9.
Asymmetric supported La28 − xW4 + xO54 + 3x/2 (La/W ≈ 5.6) membranes were investigated for their hydrogen permeation properties as a function of temperature and feed gas conditions. Dense membranes of thickness 25–30 μm supported on substrates with 25 and 40 vol.% porosity were compared. Above 850 °C under dry conditions, the hydrogen permeation rate was approximately constant as a function of temperature due to low concentration of protons in the material at high temperatures. Under humid conditions and above 960 °C enhanced permeation rates were observed. A hydrogen permeation as high as 0.14 NmL min−1 cm−2 was recorded at 1000 °C with 10 vol.% H2 (2.5 vol.% H2O) as feed gas.  相似文献   

10.
A composite of nickel and β-molybdenum carbide (Ni/β-Mo2C) was prepared from solution derived precursor and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET). The activity of Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae) was investigated by electrochemical measurements. The results from voltammetric measurements show that Ni/β-Mo2C has high electrocatalytic activity towards the oxidation of formate, lactate, ethanol, and 2,6-di-tert-butyl-p-benzoquinon (2,6-DTBBQ), which are the main metabolites of K. pneumoniae. The results from polarization curve measurement indicate that the MFC using Ni/β-Mo2C as anodic electrocatalyst delivers a higher power density than the MFC using β-Mo2C as anodic electrocatalyst. Ni/β-Mo2C provides the MFC based on K. pneumoniae with a novel noble-metal-free anodic electrocatalyst of high activity.  相似文献   

11.
Glycerol, a by-product of biodiesel production, is a potential substrate for producing electricity and value-added products in bioelectrochemical systems. Here, we demonstrate a strategy to establish a highly specific energy-producing biofilm from glycerol in a microbial fuel cell (MFC). The MFC fed with 1 g L?1 glycerol achieved maximum voltage, power density, and current of 0.4 V, 152 mW m?2, and 19.0 mA m?2, respectively, operating at a resistance of 1000 Ω. These values were much higher than the values previously described for the same glycerol concentration. High-throughput sequencing demonstrated that substituting acetate for glycerol diminished the anodic microbial diversity. In addition, glycerol shifted the microbial community composition from electroactive bacteria genera such as Delftia, Advenella, Thauera, Stenotrophomonas, and Dysgonomonas to bacteria with dual functions of electricity generation and 1,3-propanediol formation, including Citrobacter, Pseudomonas, and Klebsiella. Thus, establishing this biofilm opens the possibility of recovering energy and obtaining an added-value product from glycerol.  相似文献   

12.
A novel hard-template method to fabricate tofu-gel based N self-doped porous carbon (NC-X) as excellent oxygen reduction reaction (ORR) electrocatalyst, in which CaCO3 is in-situ formed from flocculant and then served as hard-template. The as-prepared NC-3 delivers a high specific surface area (609.10 m2 g−1), pore volume (0.68 cm3 g−1) and nitrogen content (7.20 at. %). Reasonably, NC-3 possesses more positive on-set potential (0.132 V vs. Ag/AgCl) and half-wave potential (−0.041 V vs. Ag/AgCl). Furthermore, the output voltage and maximum power density of NC-3 coated as cathode in microbial fuel cell (MFC) are enhanced to 533.65 ± 12.09 mV and 471.82 ± 15.39 mW m−2, respectively. Noted that NC-3 (2.15 × 10−3 $ g−1) also shows nice long-term stability and anti-poisoning to methanol, and is nearly 100,000 times cheaper than commercial Pt/C (20 wt %, 220.04 $ g−1). Therefore, NC-3 should be a very promising ORR catalyst in the application of MFC.  相似文献   

13.
This paper describes the research activity regarding High Pressure PEM Water Electrolysis conducted at the Energetics Department at the Politecnico di Torino (Turin, Italy). In particular, the first phase of the design and assembly of an in-house made prototype is discussed. This activity was started after a detailed theoretical and experimental work carried on a prototype manufactured by Giner Electrochemical Systems.The experience learned suggested that the new activity should aim at a pressure of about 30-45 bar and higher temperatures, because this pressure range is the one which minimises the electrolysis + compression overall power request, while higher temperature allows to work at lower voltages, thus increasing the electrolyser and the overall process efficiency.On this basis, the design of the electrolyser has been performed, and the elements of the electrolyser have been tested as described in the paper. The tests have been performed at different pressure values, and at different operating temperatures: 40 °C and 55 °C; a wide range of single cell voltage has been observed: at a current density of 1 A/cm2, it ranges from 2.1 V (T = 55 °C, p = 10 bar) to 2.4 V (T = 40 °C, p = 70 bar).  相似文献   

14.
Microbial fuel cell (MFC) has been the focus of much investigation in the search for harvesting electricity from various organic matters. The electrode material plays a key role in boosting MFC performance. Most studies, however, in the field of MFC electrode material has only focused on carbonaceous materials. The finding indicates that titanium suboxides (Ti4O7, TS) can provide a new alternative for achieving better performance. Polyaniline (PANI) together with graphene is chosen to in-situ modify TS (TSGP). The MFC reactor with TSGP anode achieves the highest voltage with 980 mV, and produces a peak power density of 2073 mW/m2, which is 2.9 and 12.7 times those with the carbon cloth control. The rather intriguing result could be due to the fact that TSGP has the high conductivity and large electrochemical active surface area, greatly improving the charge transfer efficiency and the bacterial biofilm loading. This study has gone some way towards exploring the conducting ceramics materials in MFC.  相似文献   

15.
The presence of air in the anode chamber of microbial fuel cells (MFCs) might be unavoidable in some applications. This study purposely exposed the anodic biofilm to air for sustained cycles using ceramic cylindrical MFCs. A method for improving oxygen uptake at the cathode by utilising hydrogel was also trialled. MFCs only dropped by 2 mV in response to the influx of air. At higher air-flow rates (up to 1.1 L/h) after 43–45 h, power did eventually decrease because chemical oxygen demand (COD) was being consumed (up to 96% reduction), but recovered immediately with fresh feedstock, highlighting no permanent damage to the biofilm. Two months after the application of hydrogel to the cathode chamber, MFC power increased 182%, due to better contact between cathode and ceramic surface. The results suggest a novel way of improving MFC performance using hydrogels, and demonstrates the robustness of the electro-active biofilm both during and following exposure to air.  相似文献   

16.
Our previous studies had demonstrated enhanced fermentative hydrogen production from sucrose in batch reactors with dairy manure as a supplement providing nutrients, buffering, and hydrogen-producing organisms. In this study, manure leachate is evaluated as a supplement in glucose fermentation in batch and continuous flow reactors at 25 °C without any nutrient supplements, initial pH adjustments, buffering, or stirring. Hydrogen yields found in this study are comparable to or better than those reported at higher temperatures. When the heat energy expended to maintain the test temperatures is considered, positive net energy gain of ∼10 kJ/L of reactor volume was achieved while most literature reports translated to negative net energy gain. Anaerobic digestion (AD) and microbial fuel cells (MFC) were evaluated as follow-up processes to extract additional energy from the end products of dark fermentation (DF). This evaluation showed that DF followed by MFCs to produce electricity to be a more energy-efficient approach.  相似文献   

17.
The conceptual design of a coal gasification system for the production of hydrogen is undertaken here using the PRO-II Simulation program. The operating conditions for the gasifier were tuned to between 1200 °C–1500 °C, 15 atm–30 atm and to a feed molar ratio of C:H2O:O2 = 1:0.5–1:0.25–0.5. The refinery temperature and pressure were kept at 550 °Cand 24.5 atm. The syngas produced goes to water gas shift (WGS) reactors operated at 400 °C, 24 atm (HTS) and 250 °C, 23.5 atm (LTS). The production of hydrogen was found to be independent of the concentration of steam in the feed. However, when other operating conditions are constant, the hydrogen output changes dramatically with changes to the concentration of O2 in the feed. The optimal operating conditions for the production of hydrogen by the gasification of Drayton coal were found to be: 1500 °C, 25 atm and a feed ratio C:H2O:O2 = 1:0.58:0.43.  相似文献   

18.
Microbial fuel cells (MFCs) are reactors able to generate electricity by capturing electrons from the anaerobic respiratory processes of microorganisms. While the majority of MFCs have been tested at ambient or mesophilic temperatures, thermophilic systems warrant evaluation because of the potential for increased microbial activity rates on the anode. MFC studies at elevated temperatures have been scattered, using designs that are already established, specifically air-cathode single chambers and two-chamber designs. This study was prompted by our previous attempts that showed an increased amount of evaporation in thermophilic MFCs, adding unnecessary technical difficulties and causing excessive maintenance. In this paper, we describe a thermophilic MFC design that prevents evaporation. The design was tested at 57 °C with an anaerobic, thermophilic consortium that respired with glucose to generate a power density of 375 mW m−2 after 590 h. Polarization and voltage data showed that the design works in the batch mode but the design allows for adoption to continuous operation.  相似文献   

19.
In this paper, a polypyrrole-carbon nanotube hydrogel (PPy-CNT) with 3D macroporous structure was prepared by secondary growth method. This self-supporting material with good conductivity and biocompatibility can be directly used as anode in a microbial fuel cell (MFC). The prepared material had a uniform structure with rich 3D porosity and showed good water retention performance. The effect of the mass ratio of PPy and CNT in the hydrogel were also investigated to evaluate the electrical performance of MFC. The MFC with 10:1 PPy-CNT hydrogel anode could reached the maximum power density of 3660.25 mW/m3 and the minimal electrochemical reaction impedance of anode was 5.06 Ω. The effects of Congo red concentration, external resistance and suspended activated sludge on decolorazation and electricity generation were also investigated in the MFC with the best performance hydrogel. When the Congo red concentration was 50 mg/L and the external resistance was 200 Ω, the dye decolorization rate and chemical oxygen demand (COD) removal rate could reach 94.35% and 42.31% at 48h while the output voltage of MFC was 480 mV. When activated sludge was present, the decolorization rate and COD removal rate could be increased to 99.55% and 48.08% at 48 h. The above results showed that the porous hydrogel anode had broad application prospects in synchronous wastewater treatment and electricity production of MFC.  相似文献   

20.
Developing low-cost and high-performance anodes is of great significance for wider applications of microbial fuel cells (MFCs). In this study, microalgae and pyrite were co-pyrolyzed (P/MC) and then coated on carbon felt (CF) with PTFE as a binder. P/MC modification resulted in increased electroactive surface area, superhydrophilicity and higher biocompatibility. Besides, the P/MC-CF anode reduced the charge transfer resistance from 35.1 Ω to 11.4 Ω. The highest output voltage and the maximum power density of the MFC equipped with the P/MC-CF anode were 657 mV and 1266.7 mW/m2, respectively, which were much larger than that of the MFC with the CF anode (530 mV, 556.7 mW/m2). The P/MC-CF anode also displayed higher columbic efficiency (39.41%) than the CF anode (32.37%). This work suggests that pyrolyzing microalgae with pyrite is a promising method to enhance the performance of MFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号