首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the complex hydrogen sorption behaviors in a 3NaBH4/HoF3 composite prepared through mechanical milling were carefully investigated, including the reactions occurred during ball milling and de-/rehydrogenation processes. Different from other rear earth fluorides, the HoF3 can react with NaBH4 during ball milling, leading to the formations of Na–Ho–F and Na–Ho–BH4 complex compounds. The first dehydriding of the 3NaBH4/HoF3 composite can be divided into 4 steps, including the ion exchange between H and F, the formation of NaHo(BH4)4, the decomposition of NaHo(BH4)4 and reaction of NaBH4 with Na–Ho–F compounds. The final products, HoB4, HoH3 and NaF, can be rehydrogenated to generate NaBH4 and NaHoF4 with an absorption capacity of 2.3 wt% obtained at 400 °C. Based on the Pressure–Composition–Temperature measurements, the de-/rehydrogenation enthalpies of the 3NaBH4/HoF3 composite are determined to be 88.3 kJ mol−1 H2 and −27.1 kJ mol−1 H2, respectively.  相似文献   

2.
Rehydrogenation behavior of 6LiBH4 + CaH2 composite with NbF5 has been studied between 350 and 500 °C after dehydrogenation at 450 °C. The composite exhibits the best rehydrogenation feature at 450 °C in terms of the overall rehydrogenation rate and the amount of absorbed hydrogen. It is found that about 9 wt% hydrogen is absorbed at 450 °C for 12 h. Up to 10 dehydrogenation–hydrogenation cycles have been carried out for the composite. It is demonstrated that 6LiBH4 + CaH2 with 15 wt% NbF5 maintains a reversible hydrogen storage capacity of about 6 wt% at 450 °C after a slight degradation between the 1st and 5th cycles. The addition of NbF5 seems to improve the cycle properties by retarding microstructural coarsening during cycles.  相似文献   

3.
Different destabilized LiBH4 systems with several interacting components are being explored for hydrogen storage applications. In this study, hydrogen sorption properties of as-milled 6LiBH4-MCl3 composites (M = Ce, Gd) are investigated by X-ray diffraction, differential scanning calorimetry and thermovolumetric measurements. The chemical interaction between metal halides and LiBH4 decreases the dehydrogenation temperature in comparison with as-milled LiBH4. Hydrogen release starts at 220 °C from the decomposition of M(BH4)3 formed during milling and proceeds through destabilization of LiBH4 by in-situ formed MH2. The dehydrogenation products CeB6-LiH and GdB4-LiH can be rehydrided under moderate conditions, i.e 400 °C and 6.0 MPa of hydrogen pressure for 2 h without catalyst. A new 6LiBH4-CeCl3-3LiH composite shows promissory hydrogen storage properties via the formation by milling of CeH2+x. Our study is the first work about reversible hydrogen storage in LiBH4-MCl3 composites destabilized by in-situ formed MH2.  相似文献   

4.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

5.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

6.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

7.
2LiBH4 + MgH2 system is considered as an attractive candidate for reversible hydrogen storage with high capacity and favorable thermodynamics. However, its reaction kinetics has to be further improved for the practical application. In this work, we investigated the effect of NbCl5 additive on the de/hydrogenation kinetics and microstructure refinement in 2LiH–MgB2 composite systematically. The hydrogenation and dehydrogenation kinetics of 2LiH–MgB2 composite can be significantly enhanced with the increase of NbCl5 content. The 3 mol% NbCl5 doped 2LiH–MgB2 composite exhibits the superior reversible hydrogen storage performance, which requires 50 min to uptake 9.0 wt% H2 at 350 °C and release 8.5 wt% H2 at 400 °C, respectively. In contrast, the undoped 2LiH–MgB2 sample uptakes 6.2 wt% H2 and releases 3.1 wt% H2 under identical measurement conditions. Moreover, the 3 mol% NbCl5 doped 2LiH–MgB2 composite can release more than 9.0 wt% H2 within 300 min at 400 °C without obvious degradation of capacity over the first 10 cycles. Microstructure analyses clearly indicate that NbCl5 additive first reacts with LiH to form Nb and LiCl during ball-milling process, and then NbH is formed after the first hydrogenation and stabilized upon further de/hydrogenation cycling. The well-distributed NbH active species play an important role in the improvement of de/hydrogenation kinetics for Li–Mg–B–H system through facilitating hydrogen diffusion rapidly as well as prevent the particles from further growth in the subsequent hydrogenation and dehydrogenation processes.  相似文献   

8.
In this paper, we report a novel method of improving the reversible dehydrogenation properties of the 2LiBH4–MgH2 composite. Our study found that mechanically milling with small amount of Al powder can markedly shorten or even eliminate the problematic incubation period that interrupts the dehydrogenation steps of the 2LiBH4–MgH2 composite. But the resulting composite showed serious kinetics degradation upon cycling. In an effort to solve this problem, we found that combined usage of small amounts of Al and MgO enabled the 2LiBH4–MgH2 composite to rapidly and reversibly deliver around 9 wt% hydrogen at 400 °C under 0.3 MPa H2, which compares favorably with the dehydrogenation performance of the composites with transition-metal additives. A combination of phase/microstructural analyses and series of control experiments has been conducted to gain insight into the promoting effects of Al and MgO. It was found that Al and MgO additives act as precursor and promoter for the formation of AlB2 heterogeneous nucleation sites, respectively.  相似文献   

9.
In the present work, NaBH4 based hydrogen storage materials, 3NaBH4-(x)YF3-(1-x)GdF3 composites, were prepared via mechanical ball milling with different values of x (2/3, 1/2, 1/3). The de-/rehydrogenation thermodynamic and kinetic behaviors of 3NaBH4-(x)YF3-(1-x)GdF3 composites were systematically investigated. These composites showed a single endothermal peak of hydrogen desorption even though two metal fluorides were added simultaneously into NaBH4. All the 3NaBH4-(x)YF3-(1-x)GdF3 composites showed reversible hydrogen sorption ability and the best hydrogen absorption kinetics was observed in the 3NaBH4-0.5YF3-0.5GdF3 composite, with about 2 wt% hydrogen absorbed at 370 °C under 3.2 MPa H2 pressure in 1 h. Its hydrogen absorption kinetic behaviors were correlated closely to a First-order reaction model based on experimental results. According to the pressure-composition-temperature (PCT) tests, the reversible hydrogen storage capacity increases, and the hydrogen desorption enthalpy decreases along with more GdF3 addition. In particular, the desorption enthalpy with regard to the apparent Pauling's electronegativity (χp) of added metal cations can be described as ΔHd = −2748.21χp+3852.99 kJ/mol H2, where χp=(x)∙χp(Y3+)+(1-x)∙χp(Gd3+). This research helps us to clarify the effect of co-addition of two rare earth metal fluorides on reversible hydrogen sorption in NaBH4.  相似文献   

10.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

11.
The effects of K2TiF6 on the dehydrogenation properties of LiAlH4 were investigated by solid-state ball milling. The onset decomposition temperature of 0.8 mol% K2TiF6 doped LiAlH4 is as low as 65 °C that 85 °C lower than that of pristine LiAlH4. Isothermal dehydrogenation properties of the doped LiAlH4 were studied by PCT (pressure–composition–temperature). The results show that, for the 0.8 mol% K2TiF6 doped LiAlH4 that dehydrogenated at 90 °C, 4.4 wt% and 6.0 wt% of hydrogen can be released in 60 min and 300 min, respectively. When temperature was increased to 120 °C, the doped LiAlH4 can finish its first two dehydrogenation steps in 170 min. DSC results show that the apparent activation energy (Ea) for the first two dehydrogenation steps of LiAlH4 are both reduced, and XRD results suggest that TiH2, Al3Ti, LiF and KH are in situ formed, which are responsible for the improved dehydrogenation properties of LiAlH4.  相似文献   

12.
The intermetallic compound Mg0.65Sc0.35 was found to form a nano-structured metal hydride composite system after a (de)hydrogenation cycle at temperatures up to 350 °C. Upon dehydrogenation phase separation occurred forming Mg-rich and Sc-rich hydride phases that were clearly observed by SEM and TEM with the Sc-rich hydride phase distributed within Mg/MgH2-rich phase as nano-clusters ranging in size from 40 to 100 nm. The intermetallic compound Mg0.65Sc0.35 showed good hydrogen uptake, ca. 6.4 wt.%, in the first charging cycle at 150 °C and in the following (de)hydrogenation cycles, a reversible hydrogen capacity (up to 4.3 wt.%) was achieved. Compared to the as-received MgH2, the composite had faster cycling kinetics with a significant reduction in activation energy Ea from 159 ± 1 kJ mol−1 to 82 ± 1 kJ mol−1 (as determined from a Kissinger plot). Two-dehydrogenation events were observed by DSC and pressure–composition-isotherm (PCI) measurements, with the main dehydrogenation event being attributed to the Mg-rich hydride phase. Furthermore, after the initial two cycles the hydrogen storage capacity remained unchanged over the next 55 (de)hydrogenation cycles.  相似文献   

13.
The co-effects of lanthanide oxide Tm2O3 and porous silica on the hydrogen storage properties of sodium alanate are investigated. NaAlH4-Tm2O3 (10 wt%) and NaAlH4-Tm2O3 (10 wt%)-porous SiO2 (10 wt%) are prepared by the ball milling method, and their hydrogen desorption/re-absorption capacities are compared. Dehydrogenation process was performed at 150 °C under vacuum and rehydrogenation was performed at 150 °C for 4 h under ∼9 MPa in highly pure hydrogen. The results show that Tm2O3 has a catalytic effect on the hydrogen desorption and re-absorption of NaAlH4. The hydrogen desorption capacity of Tm2O3 single-doped NaAlH4 is 4.6 wt%, higher than that of undoped NaAlH4 (4.3 wt%). During the dehydrogenation process, NaAlH4 is completely decomposed and no intermediate product Na3AlH6 is detected. The addition of porous silica improves the dehydrogenation performance of NaAlH4. Tm2O3 and porous silica co-doped NaAlH4 could release a maximum hydrogen amount of 4.7 wt%, higher than that of undoped NaAlH4 and Tm2O3 single-doped NaAlH4. Moreover, porous silica improves the reversibility of hydrogen storage in NaAlH4.  相似文献   

14.
The composites of (NaBH4+2Mg(OH)2) and (LiBH4+2Mg(OH)2) without and with nanometric Ni (n-Ni) added as a potential catalyst were synthesized by high energy ball milling. The ball milled NaBH4-based composite desorbs hydrogen in one exothermic reaction in contrast to its LiBH4-based counterpart which dehydrogenates in two reactions: an exothermic and endothermic. The NaBH4-based composite starts desorbing hydrogen at 240 °C. Its ball milled LiBH4-based counterpart starts desorbing at 200 °C. The latter initially desorbs hydrogen rapidly but then the rate of desorption suddenly decelerates. The estimated apparent activation energy for the NaBH4-based composite without and with n-Ni is equal to 152 ± 2.2 and 157 ± 0.9 kJ/mol, respectively. In contrast, the apparent activation energy for the initial rapid dehydrogenation for the LiBH4-based composite is very low being equal to 47 ± 2 and 38 ± 9 kJ/mol for the composite without and with the n-Ni additive, respectively. XRD phase studies after volumetric isothermal dehydrogenation tests show the presence of NaBO2 and MgO for the NaBH4-based composite. For the LiBH4-based composite phases such as MgO, Li3BO3, MgB2, MgB6 are the products of the first exothermic reaction which has a theoretical H2 capacity of 8.1 wt.%. However, for reasons which are not quite clear, the first reaction never goes to full completion even at 300 °C desorbing ∼4.5 wt.% H2 at this temperature. The products of the second endothermic reaction for the LiBH4-based composite are MgO, MgB6, B and LiMgBO3 and the reaction has a theoretical H2 capacity of 2.26 wt.%. The effect of the addition of 5 wt.% nanometric Ni on the dehydrogenation behavior of both the NaBH4-and LiBH4-based composites is rather negligible. The n-Ni additive may not be the optimal catalyst for these hydride composite systems although more tests are required since only one n-Ni content was examined.  相似文献   

15.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

16.
In the present study, the synthesis of two different LiBH4–Y(BH4)3 and LiBH4–YH3 composites was performed by mechanochemical processing of the 4LiBH4–YCl3 mixture and as-milled 4LiBH4–YCl3 plus 3LiH. It was found that Y(BH4)3 and YH3 formed in situ during milling are effective to promote LiBH4 destabilization but differ substantially from each other in terms of the dehydrogenation pathway. During LiBH4–Y(BH4)3 dehydriding, Y(BH4)3 decomposes first generating in situ freshly YH3 and subsequently, it destabilizes LiBH4 with the formation of minor amounts of YB4. About 20% of the theoretical hydrogen storage was obtained via the rehydriding of YB4–4LiH–3LiCl at 400 °C and 6.5 MPa. As a novel result, a compound containing (B12H12)2− group was identified during dehydriding of Y(BH4)3. In the case of 4LiBH4–YH3 dehydrogenation, the increase of the hydrogen back pressure favors the formation of crystalline YB4, whereas a reduction to ≤0.1 MPa induces the formation of minor amounts of Li2B12H12. Although for hydrogen pressures ≤0.1 MPa direct LiBH4 decomposition can occur, the main dehydriding pathway of 4LiBH4–YH3 composite yields YB4 and LiH. The nanostructured composite obtained by mechanochemical processing gives good hydrogen storage reversibility (about 80%) regardless of the hydrogen back pressure.  相似文献   

17.
For hydrogen storage applications a nanocrystalline Mg90Ni8RE2 alloy (RE = Y, Nd, Gd) was produced by melt spinning. The microstructure in the as-cast, melt-spun and hydrogenated state was characterized by X-ray diffraction and electron microscopy. Its activation, hydrogenation/dehydrogenation properties and cycle stability were examined by thermogravimetry in the temperature range from 50 °C to 385 °C and pressures up to 30 bar H2. It was found that the activated alloy can reach a reversible gravimetric hydrogen storage density of up to 5.6 wt.%-H. Furthermore, the reversible gravimetric hydrogen storage density increases with the number of hydrogenation/dehydrogenation cycles, while the dehydrogenation rate remained unchanged. This observation was attributed to the increase of the specific surface area of the ribbon due to cracking during repeated cycling. However, the microstructure of the hydrogenated alloy remained nanocrystalline throughout cycling.  相似文献   

18.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

19.
A significant decrease in the dehydrogenation temperature of Mg(AlH4)2 was achieved by low-energy ball milling with TiF4. Approximately 8.0 wt% of hydrogen was released from the Mg(AlH4)2-0.025TiF4 sample with an on-set temperature of 40 °C, which represents a decrease of 75 °C relative to pristine Mg(AlH4)2. In contrast to the three-step reaction for pristine Mg(AlH4)2, hydrogen desorption from the TiF4-doped sample involves a two-step process because the Ti-based species participates in the dehydrogenation reaction. The presence of TiF4 alters the nucleation and growth of the dehydrogenation product, significantly decreasing the activation energy barrier of the first step in the dehydrogenation of Mg(AlH4)2. Further hydrogenation measurements revealed that the presence of the Ti-based species was also advantageous for hydrogen uptake, as the on-set hydrogenation temperature was only 100 °C for the dehydrogenated TiF4-doped sample, compared with 130 °C for the additive-free sample.  相似文献   

20.
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 °C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 °C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be ∼43 kJ mol−1 H2, 10 kJ mol−1 lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号