首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In spite of the high-performance characteristics of a solid oxide fuel cell/gas turbine (SOFC/GT) hybrid system, it is difficult to maintain high-level performance under real application conditions, which generally require part-load operations. The efficiency loss of the SOFC/GT hybrid system under such conditions is closely related to that of the gas turbine. The power generated by the gas turbine in a hybrid system is much less than that generated by the SOFC, but its contribution to the efficiency of the system is important, especially under part-load conditions. Over the entire operating load profile of a hybrid system, the efficiency of the hybrid system can be maximized by increasing the contribution of power coming from the high efficiency component, namely the fuel cell. In this study, part-load control strategies using air-bypass valves are proposed, and their impact on the performance of an SOFC/GT hybrid system is discussed. It is found that air-bypass modes with control of the fuel supply help to overcome the limits of the part-load operation characteristics in air/fuel control modes, such as variable rotational speed control and variable inlet guide vane control.  相似文献   

2.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency in order to improve system efficiencies and economics. The SOFC system is semi-directly coupled to the gas turbine power plant, with careful attention paid to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 21.6 MW at 49.2% efficiency. The model also predicts a breakeven per-unit energy cost of USD 4.70 ¢/kWh for the hybrid system based on futuristic mass generation SOFC costs. Results show that SOFCs can be semi-directly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

4.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the gas turbine power plant, paying careful attention to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 20.6 MW at 49.9% efficiency. The model also predicts a break-even per-unit energy cost of USD 4.65 ¢ kWh−1 for the hybrid system based on futuristic mass generation SOFC costs. This shows that SOFCs may be indirectly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

5.
固态氧化物燃料电池(SOFC)作为高效低排放的一种先进发电方式,尤其是其与燃气轮机(GT)组成的混合系统,在未来能源的可持续发展过程中,对于提高化石能源的利用效率和可再生能源的应用将发挥重要作用。本文就目前的SOFC/GT混合模式(包括示范性项目和概念性设计)进行统计分析,在此基础上将SOFC/GT混合模式分为三种基本类型,并对相关典型混合模式进行综述和比较。本文最后对SOFC/GT混合系统目前的研究进展和面临的挑战进行讨论。  相似文献   

6.
A parametric study is conducted on a hybrid SOFC-GT cycle as part of a national program aiming to improve the efficiency of the actual gas turbine power plants and to better undertake the future investigations. The proposed power plant is mainly constituted by a Gas Turbine cycle, a SOFC system, and an ammonia water absorption refrigerating system. An external pre-reformer is installed before the SOFC. Heat recovery systems are adopted to valorize the waste heat at the SOFC and GT exhausts. The gas from the SOFC exhaust is also used as additional supply for the combustion chamber. An extraction is performed on the gas Turbine in order to feed the SOFC cycle by thermal heat flux at medium pressure.The equations governing the electrochemical processes, the energy and the exergy balances of the power plant components are established. Numerical simulation using EES software is performed. The influences of key operating parameters, such as humidity, pre-reforming fraction, extraction fraction from the Gas Turbine and fuel utilization on the performances of the SOFC-GT hybrid system are analyzed. Obtained results show that the integration of the SOFC enhances significantly the hybrid overall cycle efficiency. The increase of the ambient temperature and humidity reduces the system efficiencies. The utilization factor has a negative effect on the SOFC temperature and voltage. That leads to a decrease in the power plant performances. While the pre-reforming fraction, has a positive effect on the indicated parameters.  相似文献   

7.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10-MW GT power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the GT, in order to minimize the disruption to the GT operation. A thermo-economic model is developed to simulate the hybrid power plant and to optimize its performance using the method of Lagrange Multipliers. It predicts an optimized power output of 18.9 MW at 48.5% efficiency, and a breakeven per-unit energy cost of USD 4.54 ¢ kW h−1 for the hybrid system based on futuristic mass generation SOFC costs.  相似文献   

8.
《Journal of power sources》2006,158(1):225-244
This paper presents a full and partial load exergy analysis of a hybrid SOFC–GT power plant. The plant basically consists of: an air compressor, a fuel compressor, several heat exchangers, a radial gas turbine, mixers, a catalytic burner, an internal reforming tubular solid oxide fuel cell stack, bypass valves, an electrical generator and an inverter. The model is accurately described. Special attention is paid at the calculation of SOFC overpotentials. Maps are introduced, and properly scaled, in order to evaluate the partial load performance of turbomachineries. The plant is simulated at full-load and part-load operation, showing energy and exergy flows trough all its components and thermodynamic properties at each key-point. At full-load operation a maximum value of 65.4% of electrical efficiency is achieved. Three different part-load strategies are introduced. The off-design operation is achieved handling the following parameters: air mass flow rate, fuel mass flow rate, combustor bypass, gas turbine bypass, avoiding the use of a variable speed control system. Results showed that the most efficient part-load strategy corresponded to a constant value of the fuel to air ratio. On the other hand, a lower value of net electrical power (34% of nominal load) could be achieved reducing fuel flow rate, at constant air flow rate. This strategy produces an electrical efficiency drop that becomes 45%.  相似文献   

9.
In this article, a dynamic, lumped model of a solid oxide fuel cell (SOFC) is described, as a step towards developing control relevant models for a SOFC combined with a gas turbine (GT) in an autonomous power system. The model is evaluated against a distributed dynamic tubular SOFC model. The simulation results confirm that the simple model is able to capture the important dynamics of the SOFC and hence it is concluded that the simple model can be used for control and operability studies of the hybrid system. Several such lumped models can be aggregated to approximate the distributed nature of important variables of the SOFC. Further, models of all other components of a SOFC-GT-based autonomous power system are developed and a control structure for the total system is developed. The controller provides satisfactory performance for load changes at the cost of efficiency.  相似文献   

10.
燃料电池与燃气轮机混合发电系统有着很高的能量利用效率,是能量转换的重要研究方向。而固体氧化物燃料电池的蒸汽重整技术为该联合提供了重要的技术支持。本文设计了固体氧化物燃料电池的结构,并进行甲烷蒸汽重整的模拟计算,计算结果显示燃料电池排气温度达到1380K左右时,有很高的能量利用价值。  相似文献   

11.
A methodology to improve the performance of a hybrid solid oxide fuel cell gas turbine (SOFC‐GT) system for the whole operating range is proposed. The method suggests a way to estimate the geometric parameters of the turbomachinery components for a hybrid SOFC‐GT system. It is based on the search of the compressor and turbine operating lines giving the optimum system efficiency both in design and part load operation. Turbomachinery models are used to calculate the geometry that produces the desired performance maps and the corresponding operating lines. Based on the new turbomachinery design, the hybrid system shows a clear efficiency advantage for the whole operating range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A novel solid oxide fuel cell (SOFC)/gas turbine (GT) hybrid cycle system with CO2 capture is proposed based on a typical topping cycle SOFC/GT hybrid system. The H2 gas is separated from the outlet mixture gas of SOFC1 anode by employing the advanced ceramic proton membrane technology, and then, it is injected into SOFC2 to continue a new electrochemical reaction. The outlet gas of SOFC1 cathode and the exhaust gas from SOFC2 burn in the afterburner 1. The combustion gas production of the afterburner1 expands in the turbine 1. The outlet gas of SOFC1 anode employs the oxy‐fuel combustion mode in the afterburner 2 after H2 gas is separated. Then, the combustion gas production expands in the turbine 2. To ensure that the flue gas temperature does not exceed the maximum allowed turbine inlet temperature, steam is injected into the afterburner 2. The outlet gas of the afterburner 2 contains all the CO2 gas of the system. When the steam is removed by condensation, the CO2 gas can be captured. The steam generated by the waste heat boiler is used to drive a refrigerator and make CO2 gas liquefied at a lower temperature. The performance of the novel quasi‐zero CO2 emission SOFC/GT hybrid cycle system is analyzed with a case study. The effects of key parameters, such as CO2 liquefaction temperature, hydrogen separation rate, and the unit oxygen production energy consumption on the new system performance, are investigated. Compared with the other quasi‐zero CO2 emission power systems, the new system has the highest efficiency of around 64.13%. The research achievements will provide the valuable reference for further study of quasi‐zero CO2 emission power system with high efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
固体氧化物燃料电池(SOFC)是一种高效低污染的新型能源。建立了以天然气为燃料的固体氧化物燃料电池和燃气轮机(GT)联合发电系统的计算模型,并对具体系统进行计算。结果表明:SOFC与GT组戍的联合发电系统,发电效率可达68%(LHV);加上利用的余热,整个系统的能量利用率可以超过80%。文中还分析了SOFC的工作压力、电流密度等参数对系统性能的影响,提高工作压力,可以增加电池发电量,提高系统的发电效率;而电流密度的增大将使SOFC及整个系统的发电量降低。  相似文献   

14.
《Journal of power sources》2006,160(1):462-473
This study presents critical aspects and their influence on the performance of hybrid power systems combining a pressurized solid oxide fuel cell (SOFC) and a gas turbine (GT). Two types of hybrid system configurations with internal and external reforming have been analyzed. In order to examine the effect of matching between the fuel cell temperature and the turbine inlet temperature on the hybrid system performance, we considered air bypass after the compressor as well as additional fuel supply to the turbine side. This study focuses on the limitation of the temperature difference at the fuel cell stack and its influence on the performances of the two hybrid systems. Performances of the hybrid systems are also compared with those of simple SOFC systems, and the extent of performance enhancement is evaluated. The system with internal reforming gives better efficiency and power capacity for all design conditions than the system with external reforming under the same constraints. Its efficiency gain over the SOFC only system is considerable, while that of the system with external reforming is far less. As the temperature difference at the cell becomes smaller, the system performance generally degrades. The system with internal reforming is less influenced by the constraint of the cell temperature difference.  相似文献   

15.
Design of a hybrid system composed of a solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), gas turbine (GT), and an advanced adiabatic compressed air energy storage (AA-CAES) based on only energy analysis could not completely identify optimal operating conditions. In this study, the energy and exergy analyses of the hybrid fuel cell system are performed to determine suitable working conditions for stable system operation with load flexibility. Pressure ratios of the compressors and energy charging ratios are varied to investigate their effects on the performance of the hybrid system. The hybrid fuel cell system is found to produce electricity up to 60% of the variation in demand. A GT pressure ratio of 2 provides agreeable conditions for efficient operation of the hybrid system. An AA-CAES pressure ratio of 15 and charging ratio of 0.9 assist in lengthening the discharging time during a high load demand based on an electricity variation of 50%.  相似文献   

16.
A theoretical solid oxide fuel cell–gas turbine hybrid system has been designed using a Capstone 60 kW micro-gas turbine. Through simulation it is demonstrated that the hybrid system can be controlled to achieve transient capability greater than the Capstone 60 kW recuperated gas turbine alone. The Capstone 60 kW gas turbine transient capability is limited because in order to maintain combustor, turbine and heat exchangers temperatures within operating requirements, the Capstone combustor fuel-to-air ratio must be maintained. Potentially fast fuel flow rate changes, must be limited to the slower, inertia limited, turbo machinery air response. This limits a 60 kW recuperated gas turbine to transient response rates of approximately 1 kW s−1. However, in the SOFC/GT hybrid system, the combustor temperature can be controlled, by manipulating the fuel cell current, to regulate the amount of fuel sent to the combustor. By using such control pairing, the fuel flow rate does not have to be constrained by the air flow in SOFC/GT hybrid systems. This makes it possible to use the rotational inertia of the gas turbine, to buffer the fuel cell power response, during fuel cell fuel flow transients that otherwise limit fuel cell system transient capability. Such synergistic integration improves the transient response capability of the integrated SOFC gas turbine hybrid system. Through simulation it has been demonstrated that SOFC/GT hybrid system can be developed to have excellent transient capability.  相似文献   

17.
We present a steady‐state thermodynamic model of a hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) cycle developed using a commercial process simulation software, AspenPlus?. The hybrid cycle model incorporates a zero‐dimensional macro‐level SOFC model. A parametric study was carried out using the developed model to study the effects of system pressure, SOFC operating temperature, turbine inlet temperature, steam‐to‐carbon ratio, SOFC fuel utilization factor, and GT isentropic efficiency on the specific work output and efficiency of a generic hybrid cycle with and without anode recirculation. The results show that system pressure and SOFC operating temperature increase the cycle efficiency regardless of the presence of anode recirculation. On the other hand, the specific work decreases with operating temperature. Overall, the model can successfully capture the complex performance trends observed in hybrid cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This study compares two SOFC/GT (solid oxide fuel cell with gas turbine) hybrid systems to that of two standalone SOFC systems via eco-technoeconomic analyses that account for long-term degradation effects. Four cases were examined: 1) standalone SOFC plant without a steam bottoming cycle; 2) standalone SOFC plant with a steam bottoming cycle; 3) SOFC/GT hybrid plant without a steam bottoming cycle; and 4) SOFC/GT with a steam bottoming cycle. This study employed a real-time 1D SOFC model with an empirical degradation calculation integrated with steady-state balance-of-plant models. Simulations used Matlab Simulink R2017a, Aspen Plus V10, and Python 3.7.4 with a pseudo steady-state approach. The results showed that, with some trade-offs, the SOFC/GT hybrid plant with the steam bottoming cycle is the best option, with an overall efficiency of 44.6% LHV, an LCOE (levelized cost of electricity) of $US 77/MWh, and a CCA (cost of CO2 avoided) of -$US 49.3/tonneCO2e. The sensitivity analysis also indicated that SOFC/GT hybrid plants were less sensitive to SOFC price compared to standalone SOFC plants. The sensitivity analysis indicated that using a larger gas turbine and replacing the SOFC stack less frequently was the better design choice for the SOFC/GT hybrid plant.  相似文献   

19.
A pressurized solid oxide fuel cell–gas turbine hybrid system (SOFC–GT system) has been received much attention for a distributed power generation due to its high efficiency. When considering an energy management of the system, it is found that a heat input is highly required to preheat air before being fed to the SOFC stack. The recirculation of a high-temperature cathode exhaust gas is probably an interesting option to reduce the requirement of an external heat for the SOFC–GT system. This study aims to analyze the pressurized SOFC–GT hybrid system fed by ethanol with the recycle of a cathode exhaust gas via a simulation study. Effect of important operating parameters on the electrical efficiency and heat management of the system is investigated. The results indicate that an increase in the operating pressure dramatically improves the system electrical efficiency. The suitable pressure is in a range of 4–6 bar, achieving the highest system electrical efficiency and the lowest recuperation energy from the waste heat of the GT exhaust gas. In addition, it is found that the waste heat obtained from the GT is higher than the heat required for the system, leading to a possibility of the SOFC–GT system to be operated at a self-sustainable condition. Under a high pressure operation, the SOFC–GT system requires a high recirculation of the cathode exhaust gas to maintain the system without supplying the external heat; however, the increased recirculation ratio of the cathode exhaust gas reduces the system electrical efficiency.  相似文献   

20.
The solid oxide fuel cell (SOFC)/lithium battery hybrid energy structure uses lithium batteries as the energy buffer unit to ensure that the SOFC can operate safely and stably when the load power increases suddenly. For the SOFC/lithium battery hybrid power generation system, a real-time energy management strategy based on power prediction is discussed, and an in-depth summary is made from system construction, power prediction, energy distribution, and power tracking. In the hybrid power generation system, the SOFC system and the lithium battery influence each other. Research the appropriate energy management strategies and realize real-time energy distribution and tracking of hybrid power generation systems in order to improve system performance and economy. This has become a key issue in the current SOFC hybrid power generation system research field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号