首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of lithium borohydride (LiBH4) on the hydriding/dehydriding kinetics and thermodynamics of magnesium hydride (MgH2) was investigated. It was found that LiBH4 played both positive and negative effects on the hydrogen sorption of MgH2. With 10 mol.% LiBH4 content, MgH2–10 mol.% LiBH4 had superior hydrogen absorption/desorption properties, which could absorb 6.8 wt.% H within 1300 s at 200 °C under 3 MPa H2 and completed desorption within 740 s at 350 °C. However, with the increasing amount of LiBH4, the hydrogenation/dehydrogenation kinetics deteriorated, and the starting desorption temperature increased and the hysteresis of the pressure-composition isotherm (PCI) became larger. Our results showed that the positive effect of LiBH4 was mainly attributed to the more uniform powder mixture with smaller particle size, while the negative effect of LiBH4 might be caused by the H–H exchange between LiBH4 and MgH2.  相似文献   

2.
2LiBH4/MgH2 system is a representative and promising reactive hydride composite for hydrogen storage. However, the high desorption temperature and sluggish desorption kinetics hamper its practical application. In our present report, we successfully introduce CoNiB nanoparticles as catalysts to improve the dehydrogenation performances of the 2LiBH4/MgH2 composite. The sample with CoNiB additives shows a significant desorption property. Temperature programmed desorption (TPD) measurement demonstrates that the peak decomposition temperatures of MgH2 and LiBH4 are lowered to be 315 °C and 417 °C for the CoNiB-doped 2LiBH4/MgH2. Isothermal dehydrogenation analysis demonstrates that approximately 10.2 wt% hydrogen can be released within 360 min at 400 °C. In addition, this study gives a preliminary evidence for understanding the CoNiB catalytic mechanism of 2LiBH4/MgH2  相似文献   

3.
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system.  相似文献   

4.
Recent works showed that the addition of LiBH4 significantly improves the sorption kinetics of MgH2, and LiH decomposed from LiBH4 was supposed to play the catalytic effect on MgH2. In order to clarify this mechanism, the effect of LiH on the hydriding/dehydriding kinetics and thermodynamics of MgH2 was systematically investigated. The hydrogenation kinetics of LiH-doped samples, as well as the morphology after several cycles, was similar to those of pure MgH2, which indicate that Li+ had no catalytic effect on the hydrogenation of Mg. Moreover, the addition of LiH strongly retarded the hydrogen desorption of MgH2 doped with/without Nb2O5, and resulted in higher starting temperature of desorption, larger activation energy and larger pressure hysteresis of PCI curves of MgH2. H2, HD and D2 were observed in the desorption products of MgH2-2LiD, which confirms that H–H exchange indeed occurs between MgH2 and LiH, hence deteriorate desorption kinetics/thermodynamics of MgH2. The results implied that the additives containing H could retard the hydrogen desorption of MgH2 by H–H exchange effect.  相似文献   

5.
The hydrogen storage properties of 5LiBH4 + Mg2FeH6 reactive hydride composites for reversible hydrogen storage were investigated by comparing with the 2LiBH4 + MgH2 composite in the present work. The dehydrogenation pathway and reaction mechanism of 5LiBH4 + Mg2FeH6 composite were also investigated and elucidated. The self-decomposition of Mg2FeH6 leads to the in situ formation of Mg and Fe particles on the surface of LiBH4, resulting in a well dispersion between different reacting phases. The formation of FeB is observed during the dehydrogenation of 5LiBH4 + Mg2FeH6 composite, which might supplies nucleation sites of MgB2 during the dehydrogenation process, but is not an ascendant catalyst for the self-decomposition of LiBH4. And FeB can also transform to the LiBH4 and Fe by reacting with LiH and H2 during the rehydrogenation process. The dehydrogenation capacity for 5LiBH4 + Mg2FeH6 composite still gets to 6.5 wt% even after four cycles. The X-ray diffraction analyses reveal the phase transitions during the hydriding and dehydriding cycle. The formed FeB in the composite maintains a nanostructure after four hydriding-dehydriding cycles. The loss of hydrogen storage capacity and de-/rehydrogenation kinetics can be attributed to the incomplete generation of Mg2FeH6 during the rehydrogenation process.  相似文献   

6.
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system.  相似文献   

7.
Nanosized cobalt sulfide and cobalt boride were synthesized and doped into LiBH4 to improve the dehydrogenation properties of this important candidate for hydrogen storage. With respect to CoSx doping, the dehydrogenation temperature (peak temperature observed by mass spectrometry) of pristine LiBH4 can be reduced from 440 °C to 175 °C with a maximum capacity of 6.7 wt% at 50% doping. Unfortunately, B2H6 is liberated and the process is not reversible because the CoSx dopant reacts with LiBH4 to form more stable compounds. By changing CoSx to CoBx, a reversible dehydrogenation was realized with greatly improved reversibility. The dehydrogenation temperature was reduced to 350 °C with a maximum capacity of 8.4 wt% at 50% doping amount. It is very significant that CoBx is stable and the release of B2H6 is eliminated. A reversible hydrogen desorption of about 5.3 wt% can be achieved with a LiBH4 + 50% CoBx mixture under a mild rehydrogenation condition of 400 °C at 10 MPa H2. It is obvious that CoSx acts as a reactant even though the dehydrogenation is greatly enhanced, while CoBx behaves as a catalyst significantly promoting the dehydrogenation and reversibility of LiBH4.  相似文献   

8.
In the present work, the role of NbF5 addition amount in affecting the comprehensive hydrogen storage properties (dehydrogenation, rehydrogenation, cycling performance, hydrogen capacity) of 2LiBH4–MgH2 system as well as the catalytic mechanism of NbF5 have been systematically studied. It is found that increasing the addition amount of NbF5 to the 2LiBH4–MgH2 system not only results in dehydrogenation temperature reduction and hydriding–dehydriding kinetics enhancement but also leads to the de/rehydrogenation capacity loss. Compared with other samples, 2LiBH4–MgH2 doping with NbF5 in weight ratios of 40:4 exhibits superior comprehensive hydrogen storage properties, which can stably release ∼8.31 wt.% hydrogen within 2.5 h under 4 bar H2 and absorb ∼8.79 wt.% hydrogen within 10 min under 65 bar H2 at 400 °C even up to 20 cycling. As far as we know, this is the first time that excellent reversibility as high as 20 cycles without obvious degradation tendency in both of hydrogen capacity and reaction rate has been achieved in the 2LiBH4–MgH2 system. The further experimental study reveals that the highly catalytic effects of NbF5 on the 2LiBH4–MgH2 system are derived from the reaction between NbF5 and LiBH4, which provides a fundamental insight into the catalytic mechanism of NbF5.  相似文献   

9.
It is well known that the dehydrogenation pathway of the LiBH4–MgH2 composite system is highly reliant on whether decomposition is performed under vacuum or a hydrogen back-pressure. In this work, the effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation kinetics of the LiBH4–MgH2 system are studied under either vacuum or hydrogen back-pressure, as well as the subsequent rehydrogenation and cycling. For the pristine sample, faster desorption kinetics was obtained under vacuum, but the performance is compromised by slow absorption kinetics. In contrast, hydrogen back-pressure remarkably promotes the absorption kinetics and increases the reversible hydrogen storage capacity, but with the penalty of much slower desorption kinetics. These drawbacks were overcome after doping with NbF5, with which the dehydrogenation and rehydrogenation kinetics was significantly improved. In particular, the enhanced kinetics was observed to persist well, even after 9 cycles, in the case of the NbF5 doped sample under hydrogen back-pressure, as well as the suppression of forming Li2B12H12. Furthermore, the mechanism that is behind these effects of NbF5 additive on the reversible dehydrogenation reaction of the LiBH4–MgH2 system is discussed.  相似文献   

10.
To improve nanoconfinement of LiBH4 and MgH2 in carbon aerogel scaffold (CAS), particle size reduction of MgH2 by premilling technique before melt infiltration is proposed. MgH2 is premilled for 5 h prior to milling with LiBH4 and nanoconfinement in CAS to obtained nanoconfined 2LiBH4–premilled MgH2. Significant confinement of both LiBH4 and MgH2 in CAS, confirmed by SEM–EDS–mapping results, is achieved due to MgH2 premilling. Due to effective nanoconfinement, enhancement of CAS:hydride composite weight ratio to 1:1, resulting in increase of hydrogen storage capacity, is possible. Nanoconfined 2LiBH4–premilled MgH2 reveals a single–step dehydrogenation at 345 °C with no B2H6 release, while dehydrogenation of nanoconfined sample without MgH2 premilling performs in multiple steps at elevated temperatures (up to 430 °C) together with considerable amount of B2H6 release. Activation energy (EA) for the main dehydrogenation of nanoconfined 2LiBH4–premilled MgH2 is considerably lower than those of LiBH4 and MgH2 of bulk 2LiBH4–MgH2EA = 31.9 and 55.8 kJ/mol with respect to LiBH4 and MgH2, respectively). Approximately twice faster dehydrogenation rate are accomplished after MgH2 premilling. Three hydrogen release (T = 320 °C, P(H2) = 3–4 bar) and uptake (T = 320–325 °C, P(H2) = 84 bar) cycles of nanoconfined 2LiBH4–premilled MgH2 reveal up to 4.96 wt. % H2 (10 wt. % H2 with respect to hydride composite content), while the 1st desorption of nanoconfined sample without MgH2 premilling gives 4.30 wt. % of combined B2H6 and H2 gases. It should be remarked that not only kinetic improvement and B2H6 suppression are obtained by MgH2 premilling, but also the lowest dehydrogenation temperature (T = 320 °C) among other modified 2LiBH4–MgH2 systems is acquired.  相似文献   

11.
A novel hydrogen storage composite system, MgH2–Na3AlH6 (4:1), was prepared by mechanochemical milling, and its hydrogen storage properties and reaction mechanism were studied. Temperature-programmed desorption results showed that a mutual destabilization effect exists between the components. First, Na3AlH6 reacts with MgH2 to form a perovskite-type hydride, NaMgH3, Al, and H2 at a temperature of about 170 °C, which is about 55 °C lower than the decomposition temperature of as-milled Na3AlH6. Then, at a temperature of about 275 °C, the as-formed Al can destabilize MgH2 to form the intermetallic compound Mg17Al12, which is accompanied by the self-decomposition of the residual MgH2. This temperature is about 55 °C lower than the decomposition temperature for as-milled MgH2. Furthermore, when heated up to 345 °C, NaMgH3 starts to decompose into NaH, Mg, and H2, which is followed by the decomposition of NaH at a temperature of about 370 °C. Rehydrogenation processes show that Mg17Al12 and NaMgH3 are fully reversible. It is believed that the Mg17Al12 and NaMgH3 formed in situ provide synergetic thermodynamic and kinetic destabilization, leading to the dehydrogenation of MgH2, which is responsible for the distinct reduction in the operating temperatures of the as-prepared MgH2–Na3AlH6 (4:1) composite system.  相似文献   

12.
Amorphous Mgx(LaNi3)100−x (x = 40, 50, 60, 70) alloys with ribbon shape (5 mm wide, 0.2 mm thick) have been prepared by rapid solidification, using a melt-spinning technique. Their microstructure, hydrogen storage properties and thermal stability were studied by means of XRD, SEM, PCTPro2000 and DSC analysis, respectively. The results indicated that when Mgx(LaNi3)100−x alloys have been hydrogenated at 573 K under 2 MPa hydrogen pressure, LaH3 phase is formed in the case of x (x = 40, 50, 60, 70), Mg2NiH4 phase formed in the case of x (x = 40, 50, 60, 70), Mg2NiH0.3 phase formed in the case of x (x = 40, 50), and MgH2 phase formed in the case of x = 70. Experimental data of hydrogen desorption kinetics, tested at 523 K, 573 K and 623 K, are in good agreement with Avrami–Erofeev equation. The maximum hydrogen absorption capacity is 2.71 wt.% for Mg70(LaNi3)30 and 2.35 wt.% for Mg70(LaNi3)30, the increase of hydrogen desorption capacity is in the order of x = 70 > x = 60 > x = 50 > x = 40. Based on DSC analysis, the activation energies for dehydrogenation of these samples are calculated to be 122 ± 2 kJ/mol (x = 40) > 101 ± 3 kJ/mol (x = 50) > 84 ± 5 kJ/mol (x = 60) > 64 ± 3 kJ/mol (x = 70), which are in agreement with the results of hydrogen desorption kinetics.  相似文献   

13.
Remarkable improvement of hydrogen sorption properties of Li–N–H system has been obtained by doping with a small amount of LiBH4. The starting and ending temperatures of hydrogen desorption shift to lower temperatures and the release of NH3 is obviously restrained by 10 mol% LiBH4 doping. The kinetics of hydrogen desorption and absorption of Li–N–H system became faster by the addition of LiBH4. About 4 wt.% H2 can be released within 30 min and ∼4.8 wt.% H2 can be reabsorbed within 2 min by LiBH4 doped sample at 250 °C, while only 1.44 wt.% H2 is released and 2.1 wt.% is reabsorbed for pure Li–N–H system. The quaternary hydride (LiNH2)x(LiBH4)(1−x) formed by the reaction between LiBH4 and LiNH2 may contribute to the enhancement of the hydrogen sorption performances by yielding a ionic liquid phase and transferring LiNH2 from solid state to molten state with a weakened N–H bond.  相似文献   

14.
In this paper, we reported that a new multi-component catalyst of activated carbon supported nanosized Pd and VOx (Pd–VOx/AC, x = 2.38) prepared by wet impregnation method exhibited significant catalytic effect on hydrogen desorption of MgH2. It is demonstrated that the nanocomposites of MgH2 + Pd–VOx/AC prepared by ball milling could reduce the desorption temperature, e.g. differential scanning calorimetry (DSC) measurement indicated that the peak desorption temperature decreased ∼40 °C, and also improve the desorption kinetics of MgH2, e.g. desorbed 6.5 wt% hydrogen within 30 min at 300 °C under an initial pressure of 1 kPa. A significant decrease of activation energy (Ea) indicated that Pd–VOx/AC catalyst is highly efficient for MgH2 dehydrogenation, which may be ascribed to the synergistic effect of nanometric bimetals (metal oxides) and nanocarbon.  相似文献   

15.
In this study, we report the hydrogen absorption/desorption properties and reaction mechanism of the MgH2-NaAlH4 (4:1) composite system. This composite system showed improved dehydrogenation performance compared with that of as-milled NaAlH4 and MgH2 alone. The dehydrogenation process in the MgH2-NaAlH4 composite can be divided into four stages: NaAlH4 is first reacted with MgH2 to form a perovskite-type hydride, NaMgH3 and Al. In the second dehydrogenation stage, the Al phase reacts with MgH2 to form Mg17Al12 phase accompanied with the self-decomposition of the excessive MgH2. NaMgH3 goes on to decompose to NaH during the third dehydrogenation stage, and the last stage is the decomposition of NaH. Kissinger analysis indicated that the apparent activation energy, EA, for the MgH2-relevent decomposition in MgH2-NaAlH4 composite was 148 kJ/mol, which is 20 kJ/mol less than for as-milled MgH2 (168 kJ/mol). X-ray diffraction patterns indicate that the second, third, and fourth stages are fully reversible. It is believed that the formation of Al12Mg17 phase during the dehydrogenation process alters the reaction pathway of the MgH2-NaAlH4 (4:1) composite system and improves its thermodynamic properties.  相似文献   

16.
MgH2 is a perspective hydrogen storage material whose main advantage is a relatively high hydrogen storage capacity (theoretically, 7.6 wt.% H2). This compound, however, shows poor hydrogen desorption kinetics. Much effort was devoted in the past to finding possible ways of enhancing hydrogen desorption rate from MgH2, which would bring this material closer to technical applications. One possible way is catalysis of hydrogen desorption. This paper investigates separate catalytic effects of Ni, Mg2Ni and Mg2NiH4 on the hydrogen desorption characteristics of MgH2. It was observed that the catalytic efficiency of Mg2NiH4 was considerably higher than that of pure Ni and non-hydrated intermetallic Mg2Ni. The Mg2NiH4 phase has two low-temperature modifications below 508 K: un-twinned phase LT1 and micro-twinned phase LT2. LT1 was observed to have significantly higher catalytic efficiency than LT2.  相似文献   

17.
In order to increase the hydrogen storage capacity of Mg-based materials, a mixture with a composition of 2LiBH4 + MgF2 and LiBH4, which has a hydrogen storage capacity of 18.4 wt%, were added to MgH2. Ti isopropoxide was also added to MgH2 as a catalyst. A MgH2 composite with a composition of 40 wt%MgH2 + 25 wt%LiBH4 + 30 wt% (2LiBH4 + MgF2) + 5 wt%Ti isopropoxide (corresponding to 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide) was prepared by reactive mechanical grinding. The hydrogen storage properties of the sample were then examined. Hydrogen content vs. desorption time curves for consecutive 1st desorptions of 40 wt%MgH2 + 37 wt%LiBH4 + 18 wt%MgF2 + 5 wt%Ti isopropoxide from room temperature to 823 K showed that the total desorbed hydrogen quantity for consecutive 1st desorptions was 8.30 wt%.  相似文献   

18.
The dehydrogenation/hydrogenation properties of LiBH4-xMg(OH)2 were systematically investigated. The results show that the LiBH4-0.3Mg(OH)2 composite possesses optimal dehydrogenation properties: approximately 9.6 wt% of hydrogen is released via a stepwise reaction with an onset temperature of 100 °C. In the range of 100–250 °C, a chemical reaction between LiBH4 and Mg(OH)2 first occurs to give rise to the generation of LiMgBO3, MgO and H2. From 250 to 390 °C, the newly developed LiMgBO3 reacts with LiBH4 to form MgO, Li3BO3, LiH, B2O3 and Li2B12H12 with hydrogen release. From 390 to 450 °C, the decomposition of LiBH4 and Li2B12H12 proceeds to release additional hydrogen and to form LiH and B. A further hydrogenation experiment indicates that the dehydrogenated LiBH4-0.3Mg(OH)2 sample can take up 4.7 wt% of hydrogen at 450 °C and 100 bar of hydrogen with good cycling stability, which is superior to the pristine LiBH4.  相似文献   

19.
A synergistic effect of nanoconfinement and catalyzing is a new strategy to enhance the dehydrogenation properties of complex hydrides. Herein, LiBH4 has been infiltrated into a CoNiB-loaded carbon aerogels system (donated as LiBH4@CA@CoNiB). It is found that the desorption performances of LiBH4 are significantly strengthened. The onset desorption temperature of LiBH4@CA@CoNiB is decreased to 192 °C, and majority of the liberation occurs at about 320 °C, much lower than that of pure LiBH4. Also, about 15.9 wt% H2 could be released below 600 °C. Furthermore, LiBH4 doped with CA@CoNiB exhibits an excellent desorption kinetics, with a capacity of 9.33 wt% H2 released in 30 min at 350 °C, while only 2.13 wt% H2 is gained for bulk LiBH4. In addition, the apparent activation energy (Ea) is reduced sharply from 59.00 kJ/mol (pure LiBH4) to 46.39 kJ/mol.  相似文献   

20.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号