首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mesoporous TiO2/WO3 nanohoneycomb at a molar ratio of 3:1 was prepared by sol–gel method for photoelectrochemical splitting of water. In order to create a highly porous structure, the composite TiO2/WO3 with a block copolymer internal template was deposited on the substrate covered with polystyrene (PS) nanospheres. A mesoporous TiO2/WO3 composite nanohoneycomb was obtained after removing the PS spheres and copolymer by thermal treatment. It exhibited a lower band gap energy than TiO2 so that the optical absorption edge was shifted toward the visible light region. It also showed a better photoelectrochemical efficiency of water splitting and higher production of hydrogen due to lower energy gap, higher reactive surface area, and better charge separation efficiency.  相似文献   

2.
The hydrogen production rates from deionized water and 20% methanol solution, with or without the presence of Ta3N5, WO3, and the indirect Z-scheme Ta3N5/WO3, were investigated. Under irradiation of a 300 W Xe lamp, all of these three catalysts assisted hydrogen generation in deionized water. In the methanol solution, Ta3N5, and WO3 reduced the hydrogen generation, but Ta3N5/WO3 significantly enhanced the hydrogen production rate by seven times. Under visible light irradiation, the effects of the three catalysts are different from those under full spectrum irradiation. The mechanisms based on the competition of methanol decomposition and water reduction in the presence of catalyst under different irradiation conditions are proposed to explain the different hydrogen generation behaviors.  相似文献   

3.
Application of transition metal elements in catalysis has become a research hotspot in recent years. Here, two kinds of transition metal-centered HER electrocatalyst of Co(Ⅱ)TPP-based coordination compounds and Fe(Ⅲ)TPP-based coordination compounds are reported. Both of coordination compounds show high photocurrent response and excellent hydrogen evolution activity. The most attraction is that FeTPP-OA/PVP58, FeTPP-PTA/PVP58, FeTPP-OA/PVP1300 and FeTPP-PTA/PVP1300 possess a special surface with a big spine-like cross which is different to the regular pyramid morphology of the other coordination compounds, and these coordination compounds display superior HER performance compare to the other samples. Especially, FeTPP-OA/PVP58 exhibits a low overpotential of 83 mV at the current density of 10 mA cm−2 and an ultralow Tafel slope of 39 mV dec−1 which is close to the Pt/C (29 mV dec−1). The low charge transfer resistance of 14.4 Ω and high photocurrent of 3 μA under visible light illumination also reveal the outstanding photoelectrochemical property of FeTPP-OA/PVP58. This work provides a novel insight into the design of transition metal-centered HER electrocatalyst with high-efficiency electrocatalytic activity and low cost.  相似文献   

4.
Nanoscaled La0.6Sr0.4CoO3?δ (LSC) prepared by infiltration has been investigated as an effective catalyst to promote oxygen reduction reaction (ORR) performance for solid-oxide fuel cell. The area specific resistance of original cathode is appreciably reduced by the infiltration of LSC nanoparticles into the porous backbones of LSC cathode. The Arrhenius plots reveal that the reduction is originated from the pre-exponential factor, not the activation energy, suggesting that the rate of ORR has been enhanced by the infiltrated LSC nanoparticles. The infiltrated cell shows a high power density of 800 mW cm?2 at 700 °C, which is more than two times higher than those measured in the same conditions for a similar cell with pristine LSC cathode. Our results demonstrate that simple infiltration process without further heating at high temperature is a potential way to enhance electrochemical performance and to reduce the operating temperature.  相似文献   

5.
Palladium-impregnated or infiltrated La0.8Sr0.2MnO3–Gd0.2Ce0.8O1.9 (LSM-GDC) composites are studied as the oxygen electrodes (anodes) for the hydrogen production in solid oxide electrolysis cells (SOECs). The incorporation of small amount of Pd nanoparticles leads to a substantial increase in the electrocatalytic activity and stability of the LSM-GDC oxygen electrodes. The electrode polarization resistance (RE) at 800 °C on a 0.2 mg cm−2 Pd-infiltrated LSM-GDC electrode is 0.13 Ω cm2, significantly smaller than 0.42 Ω cm2 for the reaction on the pure LSM-GDC electrodes. The overpotential loss is also substantially reduced after the Pd infiltration; at an anodic overpotential 50 mV and 800 °C, the current increases from 0.15 A cm−2 for the pure LSM-GDC anode to 0.47 A cm−2 on a 0.3 mg cm−2 Pd-infiltrated LSM-GDC. The infiltrated Pd nanoparticles enhance the stability of the LSM-GDC oxygen electrodes and are most effective in the promotion of the diffusion, exchange and combination processes of oxygen species on the surface of LSM-GDC particles, leading to the increase in the oxygen evolution reaction rate.  相似文献   

6.
We present a form of hematite (α-Fe2O3) nanostructured architecture suitable for photoelectrochemical water oxidation that is easily synthesized by a pulsed laser deposition (PLD) method. The architecture is a column-like porous nanostructure consisting of nanoparticles 30–50 nm in size with open channels of pores between the columns. This nanostructured film is generated by controlling the kinetic energy of the ablated species during the pulsed laser deposition process. In a comparison with the nanostructured film, hematite thin film was also synthesized by PLD. All of the developed films were successfully doped with 1.0 at% of titanium. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy were used to characterize the films. To fabricate the photoelectrochemical (PEC) cell, Ti-doped hematite films were used as the working electrode, Ag/AgCl as the reference electrode, platinum wire as the counter electrode and an aqueous solution of 1 M NaOH as the electrolyte. The photovoltaic characteristics of all cells were investigated under AM 1.5G sunlight illumination of 100 mW/cm2. The photocurrent density was enhanced by approximately 220% using nanostructured film at 0.7 V versus Ag/AgCl compared to hematite thin film, and the highest photocurrent density of 2.1 mA/cm2 at 0.7 V/Ag/AgCl was obtained from the 1.0 at% Ti-doped hematite nanostructured film. The enhanced photocurrent density is attributed to its effective charge collection due to its unique column-like architecture with a large surface area.  相似文献   

7.
Nano-sized BaCe0.8Sm0.2O3−δ and Cu-doped BaCe0.8Sm0.2O3−δ proton conducting electrolyte powders are synthesized by citric-nitrate method, and then the powder properties are investigated. The synthesized BaCe0.8Sm0.2O3−δ powder acquires pure perovskite structure after heat treatment above 1100 °C, while impurity phases such as BaCO3 and Ce0.8Sm0.2O2−δ are formed below 1100 °C. The BaCe0.8Sm0.2O3−δ and Cu-doped BaCe0.8Sm0.2O3−δ showed similar powder characteristics, except the shrinkage rate. The sintering temperature for densification of the synthesized BCS are significantly reduced as much as ∼300 °C by small amount of Cu. Compared to drastic reduction in sintering temperature, the total conductivity and the activation energy of Cu doped BCS turn out to deviate negligibly from those of pure BCS.  相似文献   

8.
Zr(BH4)4·8NH3 is considered to be a promising solid state hydrogen-storage material, due to its high hydrogen capacity and low dehydrogenation temperature. However, the possible applications of Zr(BH4)4·8NH3 have been greatly hampered by the complicated and less applicable synthesis process, which must be operated at relatively low temperature (<20 °C). Herein, we reported a simple and facile “heating-(ball milling) BM vial” method via physical vapour deposition to tackle this issue. By this technique, Zr(BH4)4·8NH3 was successfully synthesized. Furthermore, composite formation by adding 10 wt% NaBH4 to the as-prepared Zr(BH4)4·8NH3 was found to be able to lower down the dehydrogenation peak of Zr(BH4)4·8NH3 from 130 to 75 °C and more excitingly, the possible emission of B2H6 and NH3 from dehydrogenation of only Zr(BH4)4·8NH3 was completely suppressed after addition of NaBH4. This research presents a new hydrogen-storage system based on Zr(BH4)4·8NH3+NaBH4 composite and it also implies a new development methodology of future hydrogen storage materials.  相似文献   

9.
The influence of NiO on the sintering behavior and electrical properties of proton conducting Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY7) as an electrolyte supporter for solid oxide fuel cells is systematically investigated. SEM images and shrinkage curve demonstrate that the sinterability of the electrolyte pellets is dramatically improved by doping NiO as a sintering aid. The sintering aid amount and sintering temperature are optimized by analyzing the linear shrinkage, grain size and morphology for a series of sintered BZCY7 electrolyte pellets. Almost full dense electrolyte pellets are successfully formed by using 0.5–1.0 wt% NiO loading after sintering at 1400 °C for 6 h. The linear shrinkage of 0.5 wt% NiO modified BZCY7 sample is about 14.25% higher than that without NiO addition (4.81%). Energy dispersive X-ray spectroscopy analysis indicate that partial NiO might dissolve into the perovskite lattice structure and the other NiO react with BZCY7 to form BaY2NiO5 secondary phase as a sintering aid. Excessive NiO is especially detrimental to the electrical properties of BZCY7 and thus lower the open circuit voltage. The electrochemical performance for a series of single cells with different concentration NiO modified BZCY7 electrolyte are measured and analyzed. The optimized composition of 0.5 wt% NiO modified BZCY7 as an electrolyte support for solid oxide fuel cell demonstrates a high electrochemical performance.  相似文献   

10.
The electrochemical performance and stability of (La,Sr)MnO3–Y2O3–ZrO2 (LSM-YSZ) composite oxygen electrodes is studied in detail under solid oxide electrolysis cells (SOECs) operation conditions. The introduction of YSZ electrolyte phase to form an LSM-YSZ composite oxygen electrode substantially enhances the electrocatalytic activity for oxygen oxidation reaction. However, the composite electrode degrades significantly under SOEC mode tested at 500 mA cm−2 and 800 °C. The electrode degradation is characterized by deteriorated surface diffusion and oxygen ion exchange and migration processes. The degradation in electrode performance and stability is most likely associated with the breakup of LSM grains and formation of LSM nanoparticles at the electrode/electrolyte interface, and the formation of nano-patterns on YSZ electrolyte surface under the electrolysis polarization conditions. The results indicate that it is important to minimize the direct contact of LSM particles and YSZ electrolyte at the interface in order to prevent the detrimental effect of the LSM nanoparticle formation on the performance and stability of LSM-based composite oxygen electrodes.  相似文献   

11.
Metal-supported solid oxide fuel cells (SOFCs) containing porous 430L stainless steel support, Ni-YSZ anode and YSZ electrolyte were fabricated by tape casting, laminating and co-firing in a reduced atmosphere. (Bi2O3)0.7(Er2O3)0.3–Ag composite cathode was applied by screen printing and in-situ sintering. The polarization resistances of the composite cathode were 1.18, 0.48, 0.18, 0.09 Ω cm2 at 600, 650, 700 and 750 °C, respectively. A promissing maximum power density of 568 mW cm−2 at 750 °C was obtained of the single cell. Short-term stability was measured as well.  相似文献   

12.
Magnetron-based gas aggregation cluster source (GAS) was used to prepare high-purity CuO (cupric oxide) nanoclusters on top of sputter-deposited thin film of tungsten trioxide (WO3). The material was assembled as a conductometric hydrogen gas sensor and its response was tested and evaluated. It is demonstrated that addition of CuO clusters noticeably enhances the sensitivity of the pure WO3 thin film. With an increasing amount of CuO clusters the sensitivity of CuO/WO3 system rises further. When CuO clusters form a sufficiently thick and compact layer, the resistance response is reversed. Based on the sensorial behavior, conventional and near-ambient pressure X-Ray photoemission spectroscopies, and resistivity measurements, we propose that the sensing mechanism is based on the formation of nano-sized p-n junctions in between p-type CuO and n-type WO3. The advantages of the GAS technique for preparing sensorial and/or catalytically active materials are emphasized.  相似文献   

13.
In a previous paper, it was demonstrated that a MgH2–NaAlH4 composite system had improved dehydrogenation performance compared with as-milled pure NaAlH4 and pure MgH2 alone. The purpose of the present study was to investigate the hydrogen storage properties of the MgH2–NaAlH4 composite in the presence of TiF3. 10 wt.% TiF3 was added to the MgH2–NaAlH4 mixture, and its catalytic effects were investigated. The reaction mechanism and the hydrogen storage properties were studied by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry (DSC), temperature-programmed-desorption and isothermal sorption measurements. The DSC results show that MgH2–NaAlH4 composite milled with 10 wt.% TiF3 had lower dehydrogenation temperatures, by 100, 73, 30, and 25 °C, respectively, for each step in the four-step dehydrogenation process compared to the neat MgH2–NaAlH4 composite. Kinetic desorption results show that the MgH2–NaAlH4–TiF3 composite released about 2.4 wt.% hydrogen within 10 min at 300 °C, while the neat MgH2–NaAlH4 sample only released less than 1.0 wt.% hydrogen under the same conditions. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2, NaMgH3, and NaH in the MgH2–NaAlH4–TiF3 composite was reduced to 71, 104, and 124 kJ/mol, respectively, compared with 148, 142, and 138 kJ/mol in the neat MgH2–NaAlH4 composite. The high catalytic activity of TiF3 is associated with in situ formation of a microcrystalline intermetallic Ti–Al phase from TiF3 and NaAlH4 during ball milling or the dehydrogenation process. Once formed, the Ti–Al phase acts as a real catalyst in the MgH2–NaAlH4–TiF3 composite system.  相似文献   

14.
The sol gel method was employed to prepare peroxopolytungstic acid (P-PTA). Palladium chloride salt was dissolved in the sol with different Pd:W molar ratios and coated on Al2O3 substrates by spin coating method. XRD and XPS techniques were used to analyze the crystal structure and chemical composition of the films before and after heat treatment at 500 °C. We observed that Pd can modify the growth kinetic of tungsten trioxide nanoparticles by reducing the crystallite size and as a result can improve hydrogen sensitivity. Resistance-sensing measurements indicated sensitivity of about 2.5 × 104 at room temperature in hydrogen concentration of 0.1% in air. Considering all sensing parameters, an optimum working temperature of 100 °C was obtained.  相似文献   

15.
PdO/ZrO2 co-infiltrated (La0.8Sr0.2)0.95MnO3-δ-(Y2O3)0.08(ZrO2)0.92 (LSM-YSZ) composite cathode (PdO/ZrO2+LSM-YSZ), which adsorbs more oxygen than equal amount of PdO/ZrO2 and LSM-YSZ, is developed and used in Ni-YSZ anode-supported cells with YSZ electrolyte. The cells are investigated firstly at temperatures between 650 and 750 °C with H2 as the fuel and air as the oxidant and then polarized at 750 °C under 400 mA cm?2 for up to 235 h. The initial peak power density of the cell is in the range of 438–1207 mW cm?2 at temperatures from 650 to 750 °C, corresponding to polarization resistance from 1.04 to 0.35 Ω cm2. This result demonstrates a significant performance improvement over the cells with other kinds of LSM based cathode. The cell voltage at 750 °C under 400 mA cm?2 decreases from initial 0.951 to 0.89 V after 170 h of current polarization and remains essentially stable to the end of current polarization. It is identified that the self-limited growth of PdO particles is responsible for the cell voltage decrease by reducing the length of triple phase boundary affecting the high frequency steps involved in oxygen reduction reaction in the cathode.  相似文献   

16.
A novel ceramic hydrogen electrode material consisting of K2NiF4-type structured Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+δ (K-PSCFN) matrix with homogenously dispersed nano-sized Co–Fe alloy (CFA) has been demonstrated by annealing perovskite Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ (P-PSCFN) in H2 at 900 °C. Impedance spectra and voltage–current density curves of the La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) electrolyte supported solid oxide electrolysis cell (SOEC) with a configuration of K-PSCFN–CFA/LSGM/Ba0.9Co0.7Fe0.2Nb0.1O3−δ (BCFN) have been evaluated as a function of the operating temperature and feeding gas absolute humidity (AH) to characterize the cell performance. Cell polarization resistances (Rp) were as low as 0.77 and 0.31 Ω cm2 under open circuit voltage (OCV) and 60% absolute humidity (AH) at 800 and 900 °C, respectively. The cell has demonstrated good stability for high temperature stream electrolysis, and a hydrogen production rate of 707 ml/cm2 h calculated from the Faraday's law has been achieved under an electrolysis voltage of 1.3 V and 60 vol.% AH at 900 °C. The cell performance results indicate that K-PSCFN–CFA is a promising hydrogen electrode for high temperature solid oxide electrolysis cells.  相似文献   

17.
Molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared via a facile impregnation method. The physical and photophysical properties of the MoS2–g-C3N4 composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microcopy (HRTEM), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The photoelectrochemical (PEC) measurements were tested via several on–off cycles under visible light irradiation. The photocatalytic hydrogen evolution experiments indicate that the MoS2 co-catalysts can efficiently promote the separation of photogenerated charge carriers in g-C3N4, and consequently enhance the H2 evolution activity. The 0.5wt% MoS2–g-C3N4 sample shows the highest catalytic activity, and the corresponding H2 evolution rate is 23.10 μmol h−1, which is enhanced by 11.3 times compared to the unmodified g-C3N4. A possible photocatalytic mechanism of MoS2 co-catalysts on the improvement of visible light photocatalytic performance of g-C3N4 is proposed and supported by PL and PEC results.  相似文献   

18.
In this study, nanostructured α-Fe2O3 thin films were deposited by simple electrodeposition for photoelectrochemical water splitting. Post-annealing temperature was found to have drastic effect on photoactivity of these films. SEM analysis illustrated that size of nanoparticles increases with annealing temperature. The current–potential characteristics showed that the water-splitting photocurrent strongly depends on post-annealing temperature. A maximum photocurrent density of 0.67 mA/cm2 was observed at 1.23 V versus reversible hydrogen electrode (RHE) under standard illumination conditions (AM 1.5 G 100 mW/cm2), and the water-splitting current was over 1.0 mA/cm2 before the dark current flow starts (at 1.55 V versus RHE). The electrode shows an onset potential as low as 0.8 V (versus RHE) for water photooxidation, which is one of the best results reported for hematite photoanodes. This high photoactivity of electrodes is attributed to the preferential growth of hematite nanostructures along the most conductive plane (001) and incorporation of Sn in film from the substrate at high annealing temperature. The best-performing electrode shows an incident photon conversion efficiency (IPCE) of 12% at 400 nm (in 1 M NaOH at 1.23 V versus RHE), which indicate the improved light-harvesting properties of these nanostructures.  相似文献   

19.
Au/α-Fe2O3 was combined with a CO2-sorbent (3-aminopropyltriethoxysilane (APTES) grafted on SBA-15 and hereafter denoted as APTES/SBA-15) to enhance preferential oxidation (PROX) of CO in H2. The CO2 molecules could be rapidly adsorbed on APTES/SBA-15 at low temperatures below 50 °C with a capacity of 0.68 mmol CO2/g-sample, and desorbed at a temperature range of 50 °C–80 °C. Three different configurations of the Au/α-Fe2O3 catalyst and the CO2-sorbent were tested in the PROX reaction, namely (i) the sorbent-free (catalyst//SBA-15//catalyst) configuration, (ii) the packed three-layer configuration (catalyst//CO2-sorbent//catalyst), and (iii) the mechanically mixed catalyst and CO2-sorbent configuration. Compared to configuration (i), configuration (ii) achieved an average 10% higher CO conversion at 50 °C and a GHSV of 65000 h−1. However, the CO concentration could not be lowered to below 70 ppm from 2000 ppm using configuration (ii) at a GHSV of 10000 h−1. Thus, a 5-layer configuration (catalyst//CO2-sorbent//catalyst//CO2-sorbent//catalyst) was used, and the CO concentration was lowered to ca. 25 ppm. The mechanism for enhancement of the PROX reaction by the continuous removal of CO2 by the CO2-sorbent is discussed and attributed to reduction of the surface carbonate on the Au/α-Fe2O3 catalyst formed during the PROX process.  相似文献   

20.
Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号