首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic partial oxidation of methane (CPOM) is a promising method for hydrogen production with autothermal reaction. To figure out the unsteady reaction characteristics of CPOM in a Swiss-roll reactor along with heat recirculation, a numerical method is employed to simulate the transient reaction dynamics, with emphasis on energy recovery using exergy analysis. Three different gas hourly space velocities (GHSVs) of 5000, 10,000 and 50,000 h−1 with the condition of atomic O/C ratio of 1 are considered. The predictions indicate that increasing GHSV substantially shortens the transient period of chemical reactions; however, it also reduces the methane conversion, as results of more reactants sent into the reactor and shorter residence time of the reactants in the catalyst bed. Within the investigated range of GHSV, the methane conversion with energy recovery at the steady state is larger than 80%, much higher than the reaction without heat recovery. The selectivities of H2 and CO in the product gas are always larger than 90%. The exergy recovery is in the range of 66–80%, implying that over two-third useful work contained in the product gas can be reused to preheat the reactants in the reactor, thereby enhancing the performance of CPOM.  相似文献   

2.
The effect of heat recovery on hydrogen production from catalytic partial oxidation of methane (CPOM) and its reaction characteristics in a reactor are investigated using numerical simulations. The reactor is featured by a Swiss-roll structure in which a rhodium (Rh) catalyst bed is embedded at the center of the reactor. By recovering the waste heat from the product gas to preheat the reactants, it is found that the combustion, steam reforming and dry reforming of methane in the catalyst bed are enhanced to a great extent. As a result, the methane conversion and hydrogen yield are improved more than 10%. Considering the operation conditions, a high performance of hydrogen production from CPOM can be achieved if the number of turns in the reactor is increased or the gas hourly space velocity (GHSV) of the reactants in the catalyst bed is lower. However, with the condition of heat recovery, the flow direction of the reactants in the reactor almost plays no part in affecting the performance of CPOM. In summary, the predictions reveal that the reactor with a Swiss-roll structure can be applied for implementing CPOM with high yield of hydrogen.  相似文献   

3.
Hydrogen production from the combination of catalytic partial oxidation of methane (CPOM) and water gas shift reaction (WGSR), viz. the two-stage reaction, in a Swiss-roll reactor is investigated numerically. Particular emphasis is placed on the interaction among the reaction of CPOM, the cooling effect due to steam injection and the excess enthalpy recovery with heat recirculation. A rhodium (Rh) catalyst bed sitting at the center of the reactor is used to trigger CPOM, and two different WGSRs, with the aids of a high-temperature (Fe–Cr-based) shift catalyst and a low-temperature (Cu–Zn-based) shift catalyst, are excited. Two important parameters, including the oxygen/methane (O/C) ratio and the steam/methane (S/C) ratio, affecting the efficiencies of methane conversion and hydrogen production are taken into account. The predictions indicate that the O/C ratio of 1.2 provides the best production of H2 from the two-stage reaction. For a fixed O/C ratio, the H2 yield is relatively low at a lower S/C ratio, stemming from the lower performance of WGSR, even though the cooling effect of steam is lower. On the contrary, the cooling effect becomes pronounced as the S/C ratio is high to a certain extent and the lessened CPOM leads to a lower H2 yield. As a result, with the condition of gas hourly space velocity (GHSV) of 10,000 h−1, the optimal operation for hydrogen production in the Swiss-roll reactor is suggested at O/C = 1.2 and S/C = 4–6.  相似文献   

4.
Hysteresis loops of catalytic partial oxidation of methane (CPOM) for hydrogen production under the effects of varied Reynolds number and Damköhler number are investigated numerically in this study. The physical phenomena are predicted using the indirect mechanism, which consists of the total oxidation (or combustion), steam reforming and CO2 reforming of methane in a catalyst bed. Numerical results reveal that, when the Damköhler number is relatively low, a hysteresis loop of CPOM from varying Reynolds number develops. Increasing the Damköhler number leads to the loop shifting toward the regime of high Reynolds number. However, once the Damköhler number is large to a certain extent, the chemical reactions are always exhibited for the Reynolds number less than 2000. A closed loop is thus not observed. Alternatively, for a given Reynolds number, an ignited Damköhler number and an extinguished Damköhler number can be obtained. Accordingly, three different regions in the plot of Damköhler number versus Reynolds number are identified. Physically, when the role played by Damköhler number on CPOM is much more important than by the Reynolds number (Region I), the thermal effect governs the chemical reactions. In contrast, if the Reynolds number plays a key role in determining the CPOM (Region III), the chemically frozen flow prevails over the catalyst bed. When the residence times of the total oxidation and convection in the catalyst bed are in an equivalent state (Region II), CPOM is characterized by a dual-solution, rendering the hysteresis loops. From the distributions of ignited and extinguished Damköhler numbers, the catalytic reactor and operation of partial oxidation of methane and other fuels can be designed accordingly.  相似文献   

5.
The hysteresis characteristics of catalytic partial oxidation of methane (CPOM) in a Swiss-roll reactor are predicted numerically by varying Damköhler number. Particular attention is paid to the influences of heat recirculation, gas hourly space velocity (GHSV), and atomic O/C ratio on the hysteresis loop and performance of CPOM. The reactions of methane combustion, steam reforming, and CO2 or dry reforming are simultaneously considered. The results reveal that preheating reactants through excess enthalpy recovery is conducive to the ignition of CPOM and extending its extinction limit, so the ignition and extinction Damköhler numbers are lowered. The analysis also suggests that steam reforming is more sensitive to the heat recovery than methane combustion and dry reforming. An increase in GHSV reduces the residence time of reactants in the catalyst bed, thereby enlarging the ignition and extinction Damköhler numbers of CPOM. A higher O/C ratio facilitates the ignition of CPOM, stemming from more oxygen supplied, but the ratio should be controlled below 1.2. From the hysteresis phenomena, hydrogen can be produced from methane at a lower Damköhler number to save more energy for performing CPOM.  相似文献   

6.
Hydrogen production by coupled catalytic partial oxidation (CPO) and steam methane reforming of methane (OSMR) at industrial conditions (high temperatures and pressures) have been studied over supported 1 wt.% NiB catalysts. Mixture of air/CH4/H2O was applied as the feed. The effects of O2:CH4 ratio, H2O:CH4 ratio and the gas hourly space velocity (GHSV) on oxy-steam reforming (OSRM) were also studied. Results indicate that CH4 conversion increases significantly with increasing O2:CH4 or H2O:CH4 ratio. However, the hydrogen mole fraction goes through a maximum, depending on reaction conditions, e.g., pressure, temperature and the feed gases ratios. Carbon deposition on the catalysts has been greatly decreased after steam addition. The supported 1 wt.% NiB catalysts exhibit high stability with 85% methane conversion at 15 bar and 800 °C during 70 h time-on-stream reaction (CH4:O2:H2O:N2 = 1:0.5:1:1.887). The thermal efficiency was increased from 35.8% by CPO (without steam) to 55.6%. The presented data would be useful references for further design of enlarged scale hydrogen production system.  相似文献   

7.
Reaction characteristics of hydrogen production from a one-stage reaction and a two-stage reaction are studied and compared with each other in the present study, by means of thermodynamic analyses. In the one-stage reaction, the autothermal reforming (ATR) of methane is considered. In the two-stage reaction, it is featured by the partial oxidation of methane (POM) followed by a water gas shift reaction (WGSR) where the temperatures of POM and WGSR are individually controlled. The results indicate that the reaction temperature of ATR plays an important role in determining H2 yield. Meanwhile, the conditions of higher steam/methane (S/C) ratio and lower oxygen/methane (O/C) ratio in association with a higher reaction temperature have a trend to increase H2 yield. When O/C ≤ 0.125, the coking behavior may be exhibited. In regard to the two-stage reaction, it is found that the methane conversion is always high in POM, regardless of what the reaction temperature is. When the O/C ratio is smaller than 0.5, H2 is generated from the partial oxidation and thermal decomposition of methane, causing solid carbon deposition. Following the performance of WGSR, it suggests that the H2 yield of the two-stage reaction is significantly affected by the reaction temperature of WGSR. This reflects that the temperature of WGSR is the key factor in producing H2. When methane, oxygen and steam are in the stoichiometric ratio (i.e. 1:0.5:1), the maximum H2 yield from ATR is 2.25 which occurs at 800 °C. In contrast, the maximum H2 yield of the two-stage reaction is 2.89 with the WGSR temperature of 200 °C. Accordingly, it reveals that the two-stage reaction is a recommended fuel processing method for hydrogen production because of its higher H2 yield and flexible operation.  相似文献   

8.
The performance of hydrogen production via steam methane reforming (SMR) is evaluated using exergy analysis, with emphasis on exergy flows, destruction, waste, and efficiencies. A steam methane reformer model was developed using a chemical equilibrium model with detailed heat integration. A base-case system was evaluated using operating parameters from published literature. Reformer operating parameters were varied to illustrate their influence on system performance. The calculated thermal and exergy efficiencies of the base-case system are lower than those reported in literature. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions and heat transfer. A significant amount of exergy is wasted in the exhaust stream. The variation of reformer operating parameters illustrated an inverse relationship between hydrogen yield and the amount of methane required by the system. The results of this investigation demonstrate the utility of exergy analysis and provide guidance for where research and development in hydrogen production via SMR should be focused.  相似文献   

9.
Development and testing of catalytic filters for partial oxidation of methane to increase hydrogen production in a biomass gasification process constitute the subject of the present study. Nickel, iron and lanthanum were coated on calcium silicate filters via co-impregnation technique, and catalytic filters were characterized by ICP-MS, XPS, XRD, TEM, TGA, TPR and BET techniques. The influences of varying reaction temperature and addition of Fe or La to Ni-based catalytic filters on methane conversion, and hydrogen selectivity have been investigated in view of preliminary results obtained from reactions with 6% methane-nitrogen mixture, and catalytic filters were tested with model biogas mixtures at optimum reaction temperature of each filter which were 750 °C or 850 °C. Approximately 93% methane conversion was observed with nearly 6% methane-nitrogen mixture, and 97.5% methane conversion was obtained with model biogas containing CH4 which is 6%, CO2, CO, and N2 at 750 °C. These results indicate that calcium silicate provides a suitable base material for catalytic filters for partial oxidation of methane and biogas containing methane.  相似文献   

10.
In recent years the catalytic partial oxidation has been taken into consideration as a suitable process for hydrogen production, because of its exothermic nature which makes the process less energy and capital cost intensive with respect to steam reforming. In this paper the behaviour of three different catalyst typologies, two based on Ni–Al2O3Al2O3 (different in active phase composition) and one constituted by Pt supported on CeO2CeO2, is studied for partial oxidation of propane (as representative of liquefied petroleum gas). For comparison the same catalysts have been tested also in methane partial oxidation.  相似文献   

11.
Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (S/C) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (Ncc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature.  相似文献   

12.
甲烷部分氧化制氢机理及方法   总被引:4,自引:0,他引:4  
就甲烷部分氧化制氢的机理和方法进行了讨论,对甲烷部分氧化制氢各种工艺的研究现状进行了阐述,能对寻找经济性较好的制氢方法有所启发,引发对甲烷部分氧化制氢机理和方法的讨论与研究:  相似文献   

13.
Hysteresis effects and reaction characteristics of methane catalytic partial oxidation (CPO) in a fixed-bed reactor are numerically simulated. The reactions are modeled based on the experimental measurements of methane CPO with a rhodium (Rh) catalyst. Three C/O ratios of 0.6, 1.0 and 1.4 are considered in the study. When the Reynolds number is 200, the predictions indicate that the methane CPO is always triggered at around the inlet temperature of 550 K, regardless of what the C/O ratio is. It is of interest that if the inlet temperature is decreased after the methane CPO develops at higher inlet temperatures, the reversed path of methane conversion is different from the original path at lower inlet temperatures. The hysteresis effect of the methane CPO is thus observed. The hysteresis behavior implies that a higher yield of syngas or hydrogen can be achieved by controlling the reaction process. Decreasing the C/O ratio intensifies the methane CPO so that the hysteresis effect is more pronounced, and vice versa. An increase in Reynolds number delays the excitation temperature of methane CPO and lessens the hysteresis effect of methane conversion due to the growth of fluid inertial force. However, the hysteresis effect of the maximum temperature in the catalyst bed increases as a result of more methane consumption.  相似文献   

14.
Thermodynamic equilibrium constant method and mathematical model are used to analyze the investigating effects of temperature, α[oxygen‐methane molar ratio] and β [carbon dioxide‐methane molar ratio] on characteristics of oxidative CO2 reforming of methane reaction over Ni/Al2O3 catalysts to produce hydrogen in the membrane reactor. While keeping temperature at 1100 K, the membrane reactor is no longer useful to separate hydrogen when α > 0.6 for hydrogen in reaction side is no longer to permeate side. When increasing β, the methane conversion goes up firstly until the β is 1.3, which is higher than the inflection point at 1.1 in the model prediction. The hydrogen yield peaks at β = 0.5 in permeate side. Increasing the temperature or reducing the β will cause the molar ratio of H2/CO increase. However, changing α has no significant effect on adjusting the molar ratio of H2/CO. By establishing equilibrium reaction model, the system performance can be accurately predicted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Catalytic partial oxidation (CPO) has potential for producing hydrogen that can be fed to a fuel cell for portable power generation. In order to be used for this purpose, catalytic partial oxidation must be combined with other processes, such as water-gas shift and preferential oxidation, to produce hydrogen with minimal carbon monoxide. This paper evaluates the use of catalytic partial oxidation in an integrated system for conversion of a military logistic fuel, JP-8, to high-purity hydrogen. A fuel processing system using CPO as the first processing step is simulated to understand the trade-offs involved in using CPO. The effects of water flow rate, CPO reactor temperature, carbon to oxygen ratio in the CPO reactor, temperature of preferential oxidation, oxygen to carbon ratio in the preferential oxidation reactor, and temperature for the water-gas shift reaction are evaluated. The possibility of recycling water from the fuel cell for use in fuel processing is evaluated. Finally, heat integration options are explored. A process efficiency, defined as the ratio of the lower heating value of hydrogen to that of JP-8, of around 53% is possible with a carbon to oxygen ratio of 0.7. Higher efficiencies are possible (up to 71%) when higher C/O ratios are used, provided that olefin production can be minimized in the CPO reactor.  相似文献   

16.
There has been considerable interest in the development of more efficient processes to generate hydrogen. Currently, steam methane reforming (SMR) is the most widely applied route for producing hydrogen from natural gas. Researchers worldwide have been working to invent more efficient routes to produce hydrogen. One of the routes is thermocatalytic decomposition of methane (TCDM) - a process that decomposes methane thermally to produce hydrogen from natural gas. TCDM has not yet been commercialized. However, the aim of this work was to conduct an economic and environmental analysis to determine whether the TCDM process is competitive with the more popular SMR process. The results indicate that the TCDM process has a lower carbon footprint. Further research on TCDM catalysts could make this process economically competitive with steam methane reforming.  相似文献   

17.
Today, conversion of hydrocarbons is one of the most common hydrogen production technologies. This paper presents a design of a high-temperature reactor — the main component of a hydrogen production unit using partial oxidation of hydrocarbons — as well as a physical model of gas generation. It also presents a schematic diagram of an experimental setup as well as results of experimental studies on steady-state modes of partial oxidation in the combustion chamber of a high-temperature reactor for various hydrocarbon feed/oxidant combinations. In the course of the study, we identified patterns that describe how the excess oxidant ratio affects the composition of products of incomplete combustion of hydrocarbons to obtain hydrogen-containing gas of the required composition and parameters for hydrogen production. We propose a method to calculate nominal geometric dimensions of a high-temperature reactor, which makes it possible to estimate its weight and size at the design stage. The paper presents results of experimental studies confirming the adequacy of the proposed method.  相似文献   

18.
Perovskite-type mixed oxides LaCrO3 and Nd0.95CrO3 were synthesized by the polymerization complex method. The perovskites were characterized by different techniques aiming to evaluate the influence of the non-stoichiometry and the nature of site A on the catalytic properties for the POM reaction. The non-stoichiometry and A sites did not affect the methane conversion, but the selectivity. The methane conversion with the neodymium catalyst Nd0.95CrO3 (N95) was 34%, and of the mixed La0.95CrO3 (L95) catalyst 38%, under these conditions. The rate of the Nd0.95CrO3 (N95) perovskite was equal to 3.50 mol.g−1.h−1 at 700 °C, which suggests higher activity compared to cobaltate perovskites. Although the hydrogen selectivity was similar the selectivity to CO and CO2 were different. Catalysts did not suffer structure changes during the POM reaction and negligible deactivation.  相似文献   

19.
Supportless Ni-Pd-0.1CNT foamy nanocatalyst with specific surface area of 611.3 m2/g was produced by electroless deposition of nickel, palladium and multiwall carbon nanotube (MWCNT) on interim polyurethane substrate. Application of temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) data into Kissinger (Redhead) kinetic model showed lessening of their activation energies due to Pd and CNT addition. Presence of foamy Ni/SiC caused 8% higher steam reforming of methane; while Ni-Pd-0.1CNT presence resulted in 22% higher methane conversion. The catalytic behavior of the samples was described by morphological and compositional studies which were carried out by transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) equipped with energy dispersive spectroscopy (EDS) and atomic absorption spectrometer (AAS) pondered with Brunauer–Emmett–Teller (BET), TPR, TPO and X-ray diffraction (XRD).  相似文献   

20.
The objective of this study is to optimize a microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane. Hydrogen assisted catalytic combustion does not require preheating because the catalytic combustion of hydrogen occurs at room temperature. After start-up by hydrogen catalytic combustion, fuels of hydrogen and methane were changed to methane. The geometric configuration of the counter-flow reactor was optimized by the simulation model under steady state condition. The hydrogen flow rate in the counter-flow reactor was also optimized by transient simulations using the response surface methodology. As a result, the counter-flow reactor showed extremely short start-up time because of the optimized configuration and the optimized hydrogen flow rate. Hot spots were avoided because of the hydrogen shut-off after start-up. The operating characteristics of the counter-flow reactor were compared with those of the co-flow reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号