首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study discusses the use of an additional layer in the cathode side of a proton exchange membrane fuel cell (PEMFC) for improved water management at dry conditions. The performance of fuel cells deteriorates significantly when low to no gas humidification is used. This study demonstrates that adding a non-porous material with perforations, such as stainless steel, between the cathode flow field plate and the gas diffusion layer (GDL) improves the water saturation in the cathode GDL and catalyst layer, increases the water content in the anode, and keeps the membrane hydrated. The slight voltage drop in the performance as a result of transport limitations is justifiable since the overall durability of the cell at these extreme conditions is enhanced. The results show that the perforated layer(s) enhances the operational life of the PEMFC under completely dry conditions. These extreme conditions (dry gases without humidification, 90 kPa, 75 °C) were used to accelerate the failure modes in the fuel cells.  相似文献   

2.
The flow field optimization design is one of the important methods to improve the performance of proton exchange membrane fuel cell (PEMFC). In this study, a new structure with staggered blocks on the parallel flow channels of PEMFC and auxiliary flow channels under the ribs is proposed. Through numerical calculation method, the effect of blocks auxiliary flow field (BAFF) on pressure drop, reactant distribution and liquid water removal in the fuel cells are investigated. The results show that when the operating voltage is 0.5 V, the current density of BAFF is 21.74% higher than that of the straight parallel flow field (SPFF), and the power density reaches 0.65 W cm?2. BAFF improves performance by equalizing the pressure drop across sub-channels, promoting the uniform distribution of reactant, and enhancing transport across the ribs. In addition, through parameter analysis, it is found that BAFF can discharge liquid water in time at the conditions of high humidification, high current density and low temperature, which ensures the output performance of the fuel cell and improves the durability of the fuel cell. This paper provides new ideas for the improvement of PEMFC flow field design, which is beneficial to the development of PEMFC with high current density.  相似文献   

3.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

4.
It is well known that water plays a very important role in the performance of proton exchange membrane (PEM) fuel cells. Non-uniform water content in the membrane leads to non-uniform ionic resistance, and non-uniform liquid water fraction in the porous electrode causes varied mass transfer resistances. The objective of this work is to study the effects of different anode and cathode humidification temperatures on local current densities of a PEM fuel cell with a co-flow serpentine flow field. The method used is the current distribution measurement gasket technique [H. Sun, G.S. Zhang, L.J. Guo, H. Liu, J. Power Sources 158 (2006) 326–332]. The experimental results show that both air and the hydrogen need to be humidified to ensure optimal cell performance, and too high or too low humidification temperature can cause severe non-uniform distribution of local current density. From the experimental results of local current density distributions, the local membrane hydration, the optimal humidification temperature, and if flooding occurs can be obtained. Such detailed local measurement results could be very valuable in fuel cell design and operation optimizations.  相似文献   

5.
A proton exchange membrane fuel cell (PEMFC) using a controlled amount of phosphoric acid (PA) in a membrane-electrode assembly (MEA) is operated at 150 °C without humidification of the cells. The effects on MEA performance of Pt loading and the amount of PA in the cathode are investigated. The catalyst utilization is maximized by optimizing the PA content in the cathodes and results in lowering of the Pt loading in the MEA. In-situ cyclic voltammetry is used to confirm that the highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode. The transient response of cell voltage during current density–voltage experiments (I–V curve) is also found to be affected by the amount of PA in the electrodes.  相似文献   

6.
Current distributions in a proton exchange membrane fuel cell (PEMFC) with interdigitated and serpentine flow fields under various operating conditions are measured and compared. The measurement results show that current distributions in PEMFC with interdigitated flow fields are more uniform than those observed in PEMFC with serpentine flow fields at low reactant gas flow rates. Current distributions in PEMFC with interdigitated flow fields are rather uniform under any operating conditions, even with very low gas flow rates, dry gas feeding or over-humidification of reactant gases. Measurement results also show that current distributions for both interdigitated and serpentine flow fields are significantly affected by reactant gas humidification, but their characteristics are different under various humidification conditions, and the results show that interdigitated flow fields have stronger water removal capability than serpentine flow fields. The optimum reactant gas humidification temperature for interdigitated flow fields is higher than that for serpentine flow fields. The performance for interdigitated flow fields is better with over-humidification of reactant gases but it is lower when air is dry or insufficiently humidified than that for serpentine flow fields.  相似文献   

7.
The proton conductivity of perfluorinated ionomer membrane used in a proton exchange membrane fuel cell (PEMFC) depends largely on the extent of hydration state of the membrane. Sufficient membrane hydration is achieved typically through the humidification of gases prior to feeding them into the fuel cell. Further, hydrogen humidification is known to have a larger impact on the performance of a PEMFC than the oxygen humidification. Bubble humidification has been a widely used method to externally humidify hydrogen. However, to-date a continuous bubble humidification system, which is essential to the continuous operation of the PEMFC system, has not been implemented. The main contributions of this work are (i) a design for continuous humidification of hydrogen for the PEMFC system and (ii) a method to maintain the RH of hydrogen between 93 and 95% (at desired temperature) over a wide range of gas flow rates. One of the key advantages of the proposed design is the flexibility of using recirculated stack coolant water to increase the energy efficiency of the PEMFC system. The design is first tested off-line and then online with a 1 kW stack. Results obtained from both the off-line and online tests indicate that the design successfully meets the demands of an online operation. It is observed that with the use of the proposed humidification scheme, the stack efficiency in terms of power output increases by about 6–19% of the power obtained under dry hydrogen conditions.  相似文献   

8.
This paper deals with the online checking of the humidification of a Proton Exchange Membrane Fuel Cell (PEMFC). Indeed, drying or flooding can decrease the performance of the PEMFC and even lead to its destruction. An online humidification diagnosis can allow a real-time control. A good indicator of the membrane humidification state is its internal resistance. As known, the membrane ionic conductivity increases with the membrane water content. This resistance can be calculated at high frequency by dividing the voltage variation by the current variation. The proposed scheme makes use of measurements of current and voltage ripples coming from the association of a static DC–DC converter and the fuel cell. The experiment thus consists in computing the internal resistance in wet and dry conditions.  相似文献   

9.
Computational fluid dynamics analysis was carried out to investigate the reactants flow behavior and water management for proton exchange membrane fuel cell (PEMFC). A complete three-dimensional model was chosen for single straight channel geometry considering both anode and cathode humidification. Phase transformation was included in the model to predict the water vapor and liquid water distributions and the overall performance of the cell for different current densities. The simulated results showed that for fully humidified conditions hydrogen mole fraction increases along the anode channel with increasing current density, however, at higher current densities it decreases monotonically. Different anode and cathode humidified conditions results showed that the cell performance was sufficiently influenced by anode humidification. The reactants and water distribution and membrane conductivity in the cell depended on anode humidification and the related water management. The cathode channel–GDL (Gas Diffusion Layer) interface experiences higher temperature and reduces the liquid water formation at the cathode channel. Indeed, at higher current densities the water accumulated in the shoulder area and exposed higher local current density than the channel area. Higher anode with lower cathode humidified combination showed that the cell had best performance based on water and thermal management and caused higher velocity in the cathode channel. The model was validated through the available literature.  相似文献   

10.
蒋杨  焦魁 《热科学与技术》2019,18(3):200-205
针对质子交换膜燃料电池(PEMFC)水管理开展了研究,建立了一维非等温两相流解析模型,研究了不同电流密度、微孔层接触角和不同加湿方案对电池内部水分布和温度分布的影响,提出了更好的进气加湿方案。结果表明:电流密度增大会导致阳极拖干、阴极水淹加剧,导致电池各部分温度上升。因各层材料亲水性不同,在交界面处能观察到液态水阶跃现象。增大微孔层接触角促进阴极液态水反扩散到阳极,一定程度上缓解阳极变干,但过大的接触角可能导致阴极水淹加剧。通过采取"阳极充分加湿、阴极低加湿"的进气加湿方案可以有效提高电池性能,并且能在一定程度改善电池内部受热,提高电池使用寿命。  相似文献   

11.
Most generally used flow channel designs in polymer electrolyte membrane fuel cells (PEMFCs) are serpentine flow designs as single channels or as multiple channels due to their advantages over parallel flow field designs. But these flow fields have inherent problems of high pressure drop, improper reactant distribution, and poor water management, especially near the U‐bends. The problem of inadequate water evacuation and improper reactant distribution become more severe and these designs become worse at higher current loads (low voltages). In the current work, a detailed performance study of enhanced cross‐flow split serpentine flow field (ECSSFF) design for PEMFC has been conducted using a three‐dimensional (3‐D) multiphase computational fluid dynamic (CFD) model. ECSSFF design is used for cathode part of the cell and parallel flow field on anode part of the cell. The performance of PEMFC with ECSSFF has been compared with the performance of triple serpentine flow design on cathode side by keeping all other parameters and anode side flow field design similar. The performance is evaluated in terms of their polarization curves. A parametric study is carried out by varying operating conditions, viz, cell temperature and inlet humidity on air and fuel side. The ECSSFF has shown superior performance over the triple serpentine design under all these conditions.  相似文献   

12.
A fundamental understanding of the water balance of a fuel cell during operation is crucial for improving the cell performance and durability. The humidification in the anode or cathode has an important effect on the flow characteristics and cell efficiency. Three-dimensional steady mathematical model based on the electrochemical, current distribution, fluid motion continuity equation, momentum and energy equation, boundary layer theory has been developed to simulate PEMFC with interdigitated flow field using the computational fluid dynamics (CFD). Effects on the current density and temperature differences have been simulated and analyzed respectively, when the humidification in the anode or cathode is from 0% to 100% respectively. The numerical results show that the humidification strongly influences the current density and temperature difference so as to affect the cell efficiency. Under the same operation conditions and low humidification conditions, anode humidification can better enhance the performance of the battery and improve the extent of PEM humidification.  相似文献   

13.
为了改善质子交换膜燃料电池(PEMFC)内部的水热平衡,从而进一步改善PEMFC的输出性能,文章建立了PEMFC的三维模型,通过改变PEMFC的外界供给参数(进气速度、加湿率以及冷却水流速),应用COMSOL模拟仿真得到了PEMFC的极化曲线和功率曲线、流道和气体扩散层(GDL)的水浓度分布情况,以及冷却水流速对PEMFC温度的影响。研究结果表明:随着进气速度和加湿率的逐渐增加,PEMFC的输出性能均逐渐提升,但是,过高的加湿率可能导致电极水淹;随着冷却水流速的增加,PEMFC温度加速下降,膜内温度分布变得更均匀。  相似文献   

14.
Liquid water management plays a significant role in proton exchange membrane fuel cell (PEMFC) performance, especially when the PEMFC is operating with high current density. Therefore, understanding of liquid water behavior and flooding process is a critical challenge that must be addressed. To overcome PEMFC durability problems, a liquid water flooding process is studied in the cathode side of a PEMFC with straight parallel channels and a porous layer using FLUENT® v6.3.26 software with a volume-of-fluid (VOF) algorithm and user-defined-function (UDF). The general process of liquid water flooding within this type of PEMFC cathode is investigated by analyzing the behavior of liquid water in porous layer and gas flow channels. Two important phenomena, the “first channel phenomenon” and the “last channel phenomenon”, and their effects on the flow distribution along different parallel channels are discussed.  相似文献   

15.
《Journal of power sources》2006,158(1):316-325
Water balance in a polymer electrolyte membrane fuel cell (PEMFC) was investigated by measurements of the net drag coefficient under various conditions. The effects of water balance in the PEMFC on the cell performance were also investigated at different operating conditions. Experimental results reveal that the net drag coefficient of water through the membrane depended on current density and humidification of feed gases. It was found that the net drag coefficient (net number of water molecules transported per proton) ranged from −0.02 to 0.93, and was dependent on the operating conditions, the current load and the level of humidification. It was also found that the humidity of both anode and cathode inlet gases had a significant effect on the fuel cell performance. The resistance of the working fuel cell showed that the membrane resistance increased as the feed gas relative humidity (RH) decreased. The diffusion of water across Nafion membranes was also investigated by experimental water flux measurements. The electro-osmotic drag coefficient was evaluated from the experimental results of water balance and diffusion water flux measurements. The value of electro-osmotic drag coefficient, ranging from 1.5 to 2.6 under various operating conditions, was in agreement with literature values. The electro-osmotic drag coefficient, the net flux of water through the membrane and the effective drag as a function of operating conditions will also provide validation data for the fuel cell modeling and simulation efforts.  相似文献   

16.
This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4–0.8 A/cm2. Since the voltage shift is quite small (roughly 0.73–0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced.  相似文献   

17.
In this paper, a three-dimensional numerical model of the proton exchange membrane fuel cells (PEMFCs) with conventional flow field designs (parallel flow field, Z-type flow field, and serpentine flow field) has been established to investigate the performance and transport phenomena in the PEMFCs. The influences of the flow field designs on the fuel utilization, the water removal, and the cell performance of the PEMFC are studied. The distributions of velocity, oxygen mass fraction, current density, liquid water, and pressure with the convention flow fields are presented. For the conventional flow fields, the cell performance can be enhanced by adding the corner number, increasing the flow channel length, and decreasing the flow channel number. The cell performance of the serpentine flow field is the best, followed by the Z-type flow field and then the parallel flow field.  相似文献   

18.
Novel water management strategies are important to the development of next generation polymer electrolyte membrane fuel cell systems (PEMFCs). Parallel and interdigitated flow fields are two common types of PEMFC designs that have benefits and draw backs depending upon operating conditions. Parallel flow fields rely predominately on diffusion to deliver reactants and remove byproduct water. Interdigitated flow fields induce convective transport, known as cross flow, through the porous gas diffusion layer (GDL) and therefore are superior at water removal beneath land areas which can lead to higher cell performance. Unfortunately, forcing flow through the GDL results in higher pumping losses as the inlet pressure for interdigitated flow fields can be up to an order of magnitude greater than that for a parallel flow field. In this study a flow field capable of switching between parallel and interdigitated configurations was designed and tested. Results show, taking into account pumping losses, that using constant stoichiometry the parallel flow field results in a higher system power under low current density operation compared to the interdigitated configuration. The interdigitated flow-field configuration was observed to have lower overvoltage at elevated current densities resulting in a higher maximum power and a higher limiting current density. An optimal system power curve was produced by switching from parallel to interdigitated configuration based on which produces a higher system power at a given current density. This design method can be easily implemented with current PEMFC technology and requires minimal hardware. Some of the consequences this design has on system components are discussed.  相似文献   

19.
Since the output voltage of the proton exchange membrane fuel cell (PEMFC) is relatively low and load-dependent, a high-performance fuel cell front-end converter is required to achieve boost and power regulation in PEMFC systems. In response, a novel family of high gain fuel cell front-end converters with low input current ripple is proposed. The proposed topologies can substantially improve the voltage gain through the expansion and combination of active switched-inductor networks and passive switched-capacitor units. The introduced interleaved parallel structure is convenient to limit the current ripple on the input side to prevent accelerated aging of fuel cells, which is another prominent advantage. Meanwhile, the converters can achieve the automatic current sharing between parallel inductors and the low voltage stress on active switches and diodes. In this paper, the fuel cell model and topology derivation of the high gain fuel cell front-end converters are first analyzed. Then, it further describes the operating mode and steady-state performance of converters under the inductor current continuous conduction mode. The comparison with other converters shows that this converter is suitable for connecting the PEMFC to the high voltage DC bus. Finally, a 200 W, 20/180 V converter prototype is implemented, and the simulation and experiment prove the theoretical correctness and validate the superior performances of the proposed converters.  相似文献   

20.
This paper describes the performance of a polymer electrolyte membrane fuel cell (PEMFC) system without humidification of the reactants which consumes a lot of parasitic power, increases the weight of the PEMFC system and thus adds complexity. Such PEMFC systems are preferable for portable applications. The results indicate that dry gas operation depends on various factors like reactant flow field design, area of the electrode and equilibration time for the product water. The performance of the fuel cell can be improved by giving some equilibration time for the product water, produced by the electrochemical reactions, to get transported across the membrane to the anode side, thus increasing the conductivity of the membrane. The water transported through the membrane across the cell was investigated by measuring the amount of product water at the anode side which allows humidification for the anode gas and less condensed water in the fluid flow channels of the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号