首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to utilize CeO2 as a co-catalyst with Pt for methanol electro-oxidation, Pt-CeO2/CNTs were prepared through structural designing by adsorbing Pt nanoparticles on CeO2 coated CNTs. X-ray Diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) were used to analyze the composition of the prepared catalysts. Zeta potential analysis, high resolution transmission electron microscopy (HRTEM) and cyclic voltammetry (CV) methods indicated that Pt nanoparticles are selectively adsorbed on CNTs other than CeO2 surface. Pt-CeO2/CNTs were compared with Pt supported on CNTs in terms of electrochemical active surface (EAS) areas, methanol electro-oxidation activity, and chronoamperometry, results indicating that CeO2 can enhance the catalytic activity of Pt for methanol electro-oxidation with no apparent decrease of EAS. The CO stripping test showed that CeO2 can make CO stripped at a lower potential, which is helpful for CO and methanol electro-oxidation.  相似文献   

2.
The spinel LiNi0.5Mn1.5O4 has been surface modified separately with 1.0 wt.% ZrO2 and ZrP2O7 for the purpose of improving its cycle performance as a cathode in a 5-V lithium-ion cell. Although the modifications did not change the crystallographic structure of the surface-modified samples, they exhibited better cyclability at elevated temperature (55 °C) compared with pristine LiNi0.5Mn1.5O4. The material that was surface modified with ZrO2 gave the best cycling performance, only 4% loss of capacity after 150 cycles at 55 °C. Electrochemical impedance spectroscopy demonstrated that the improved performance of the ZrO2-surface-modified LiNi0.5Mn1.5O4 is due to a small decrease in the charge transfer resistance, indicating limited surface reactivity during cycling. Differential scanning calorimetry showed that the ZrO2-modified LiNi0.5Mn1.5O4 exhibits lower heat generation and higher onset reaction temperature compared to the pristine material. The excellent cycling and safety performance of the ZrO2-modified LiNi0.5Mn1.5O4 electrode was found to be due to the protective effect of homogeneous ZrO2 nano-particles that form on the LiNi0.5Mn1.5O4, as shown by transmission electron microscopy.  相似文献   

3.
The WO3-C hybrid materials are prepared by intermittently microwave-pyrolysis using ammonium tungstate as the precursor, and then Pt nano-particles are deposited by microwave-assited polyol process on WO3-C. The TEM images show the dispersion of ∼10 nm WO3 particles size supported on carbon and ∼3 nm Pt metal crystallites supported on WO3-C. XRD results illustrate that WO3 presented as monoclinic phase and the content of WO3 in WO3/C and Pt/WO3-C catalysts is further characterized by EDAX. Furthermore, XPS characterizations indicate that the interaction between Pt and WO3 is dramatically enhanced after heat treatment at 200 °C. The activities of Pt/WO3-C for the electrochemical oxidation of methanol are compared with Pt/C in acid solution by cyclic voltammetry, CO-stripping and chronoaperometry. Pt/WO3-C catalyst calcined at 200 °C exhibits the highest activity per electrochemical active surface area for methanol oxidation and is 60 mV more negative for CO electro-oxidation than that of Pt/C and Pt/WO3-C without heat treatment. The great enhancement of electrochemical performance may be due to the improvement of the synergistic effect between Pt and WO3 in Pt/WO3-C catalyst after heat treatment.  相似文献   

4.
Design of novel nano-scale catalysts with high activity and low cost for methanol oxidation reaction is crucial for the development of direct methanol fuel cell. In this study, MnOx, Pt and Pb were forced to precipitate successively on the surface of carbon nanotubes for fabricating a PtPb/MnOx-CNTs catalyst. Physical characterizations indicated that there existed a mass of Mn (IV, Ⅴ), Pb (Ⅱ) and Pt (0) species, and partial alloying between Pt and Pb in this catalyst. Methanol oxidation reaction with this novel composite exhibited over 3 times higher specific activity (140.9 mA cm−2) and somewhat lower onset potential (−0.1 V vs. Hg/Hg2SO4) than the values on Pt/CNTs (44.2 mA cm−2 and 0 V, respectively). Fundamental understanding in reaction mechanisms enabled us to reveal the distinguishing functions between Pb and MnOx in methanol oxidation processes. The addition of Pb resulted in the enhanced intrinsic activity towards electro-oxidation of residual intermediate species, while dehydrogenation in methanol oxidation processes was obviously improved by using MnOx-CNTs as a support.  相似文献   

5.
Mesoporous ZrO2-modified coupled ZnO/TiO2 nanocomposites were prepared by a surfactant assisted sol–gel method. The photocatalytic performance of these materials was investigated for H2 evolution without noble metal co-catalyst using aqueous methanol media under AM1.5 simulated light. The H2 evolution was compared with coupled ZnO/TiO2, TiO2, ZnO and Degussa P25. The ZrO2-modified nanocomposites exhibited higher H2 generation, specifically 0.5 wt.% ZrO2 loading produced 30.78 mmol H2 g−1 compared to 3.55 mmol H2 g−1 obtained with coupled ZnO/TiO2. A multiple absorbance thresholds at 435 nm and 417 nm were observed with 0.5 wt.% ZrO2 loading, corresponding to 2.85 eV and 2.97 eV band gap energies. The high surface area, large pore volume, uniform crystallite sizes and enhanced light harvesting observed in ZrO2-modified nanocomposites were contributing factors for effective charge separation and higher H2 production. The possible mechanism of H2 generation from aqueous methanol solution over ZrO2-modified nanocomposite is presented.  相似文献   

6.
Nitrogen doped carbon nanotubes (CNx) of a high nitrogen concentration were synthesized directly on carbon paper as the skeleton of a 3D composite electrode. Ultra-fine SnO2 nanoparticles about 1.5 nm were deposited on CNx with atomic layer deposition (ALD) technique. Pt nanoparticles from 1.5 to 4 nm were deposited on CNx/carbon paper and SnO2/CNx/carbon paper with ethylene glycol reduction method. Three dimensional Pt/CNx/carbon paper and Pt-SnO2/CNx/carbon paper composite electrodes were obtained, respectively. They were characterized over oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) for low temperature fuel cells. With similar sizes of Pt nanoparticles, the electrochemical surface area (ECSA) of Pt-SnO2/CNx/carbon paper is larger than that of Pt/CNx/carbon paper. Pre-deposited SnO2 nanoparticles promote the electrocatalytic activity of Pt toward ORR, carbon monoxide (CO) stripping and MOR. The underlying mechanisms for the enhanced activities are discussed.  相似文献   

7.
We presented a modified electrode based on electrospun PdO–Co3O4 nanofiber composite for electro-oxidation of methanol in alkaline media. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were adopted to characterize the structures and composition of the composite modified electrodes. The influential factors such as the component and amounts of nanofibers were also studied. After electrochemical pretreatment, the Nafion/PdO–Co3O4/GCE (the atomic ratio of Pd:Co = 2:1) exhibited the greatest electrocatalytic activity toward methanol electro-oxidation among the electrodes investigated. The present novel strategy is expected to reduce the cost of the catalyst of methanol electro-oxidation remarkably.  相似文献   

8.
A modified Zr-coating process was introduced to improve the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. The ZrO2-coating was carried out on an intermediate, (Ni1/3Co1/3Mn1/3)(OH)2, rather than on Li(Ni1/3Co1/3Mn1/3)O2. After a heat treatment process, one part of the Zr covered the surface of Li(Ni1/3Co1/3Mn1/3)O2 in the form of a Li2ZrO3 coating layer, and the other part diffused into the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2. A decreasing gradient distribution in the concentration of Zr was detected from the surface to the bulk of Li(Ni1/3Co1/3Mn1/3)O2 by X-ray photoelectron spectra (XPS). Electrochemical tests indicated that the 1% (Zr/Ni + Co + Mn) ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2 prepared by this process showed better cyclability and rate capability than bare Li(Ni1/3Co1/3Mn1/3)O2. The result can be ascribed to the special effect of Zr in ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2. The surface coating layer of Li2ZrO3 improved the cycle performance, while the incorporation of Zr in the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2 modified the rate capability by increasing the lattice parameters. Electrochemical impedance spectra (EIS) results showed that the increase of charge transfer resistance during cycling was suppressed significantly by ZrO2 modification.  相似文献   

9.
A novel perovskite intercalated nanomaterial HLaNb2O7/(Pt, TiO2) is fabricated by successive intercalated reaction of HLaNb2O7 with [Pt(NH3)4]Cl2 aqueous solution, n-C6H13NH2/C2H5OH organic solution and acidic TiO2 colloid solution, followed by ultraviolet light irradiation. The gallery height and the band gap energy of HLaNb2O7/(Pt, TiO2) is less than 0.6 nm and 3.14 eV, respectively. The photocatalytic activity of HLaNb2O7/TiO2 is superior to that of unsupported TiO2 and is enhanced by the co-incorporation of Pt. The photocatalytic hydrogen evolution based on HLaNb2O7/(Pt, TiO2) is 240 cm3 h−1 g−1 using methanol as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. High photocatalytic activity of HLaNb2O7/(Pt, TiO2) may be due to the host with rare earth La element and perovskite structure, the quantum size effect of intercalated semiconductor and the coupling effect between host and guest.  相似文献   

10.
Graphene nanoribbons (GNRs) were first used as a novel support material for Pt nanoparticles (NPs) based catalyst for methanol electro-oxidation. Upon oxidation and cutting of multiwall carbon nanotubes (MWCNTs), highly dispersive graphene oxide nanoribbons (GONRs) were obtained, on which metal ions such as PtCl62− can be homogenously deposited. The hybrid catalyst of GNRs supported Pt NPs (Pt/GNR) was further prepared through facile in-situ chemical co-reduction, with a homogeneous distribution of Pt NPs (2–3 nm) on the nanoribbons. Compared to Pt/MWCNT and commercial Pt/XC72R catalysts, Pt/GNR hybrids show much larger electrochemically active surface area, higher electrochemical stability, and better CO tolerance towards electro-oxidation of methanol. Therefore, GNR is a promising alternative two-dimensional support material for electrocatalysts in direct methanol fuel cells.  相似文献   

11.
Hydrogen production via steam reforming of methanol has been studied over a series of CuO/ZnO/Al2O3 catalysts synthesized by the combustion method using urea as fuel. Furthermore, the effect of alumina loading on the properties of the catalyst has been investigated. XRD analysis illustrated the crystallinity of the Cu and Zn oxides decreases by enhancing alumina loading. BET showed the surface area improvement and FESEM images revealed lower size distribution by increasing the amount of alumina. EDX results gave approximately the same metal oxide compositions of primary gel for the surface of the nanocatalysts. Catalytic performance tests showed the well practicability of catalysts synthesized by the combustion method for steam reforming of methanol process. Alumina addition to the CuO/ZnO catalyst caused the higher methanol conversion and the lower CO generation. Among different compositions the sample with molar component of CuO/ZnO/Al2O3 = 4/4/2.5 showed the best performance which without CO generation at 240 °C its methanol conversion decreased from 90 to 60% after 90 h.  相似文献   

12.
In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, SBET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique.The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique.Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts.Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential.Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst.The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity.  相似文献   

13.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

14.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

15.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

16.
A Pt-Nb2O5/C electrocatalyst was synthesized by a two-step process as an anode material in direct methanol fuel cell (DMFC). The Pt-Nb2O5/C catalysts heat-treated at different temperatures (400 and 500 °C) in flowing N2 were characterized by various methods such as inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy (XPS). The heat-treated Pt-Nb2O5/C catalyst at 400 °C showed the best electrochemical activity for CO and methanol oxidations among the prepared catalysts. The XPS results showed the electronic structure change of Pt, indicating a formation of interaction between Pt and Nb2O5. It is suggested that a synergistic effect between Pt and Nb2O5 enhances the electrocatalytic activity for CO and methanol oxidations. We believe that Nb2O5-promoted Pt/C catalyst may be regarded as one of the attractive candidates as an anode material in DMFC.  相似文献   

17.
New Pt/C cathodes with many reaction sites for the oxygen reduction reaction as well as high tolerance to Pt corrosion have been designed for high-temperature proton exchange membrane fuel cells (PEMFCs), wherein a composite mixture of Sn0.9In0.1P2O7 (SIPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) functioned as an ionomer. The microstructure of the Pt-SIPO-sSEBS/C cathode was characterized by homogeneous distribution of the ionomer over the catalyst layer and close contact between the ionomer and the Pt/C powder. As a result, the activation and concentration overpotentials of the Pt-SIPO-sSEBS/C cathode between 100 and 200 °C were lower than those of an H3PO4-impregnated Pt/C cathode, which suggests that the present ionomer can avoid poisoning of Pt by phosphate anions and the limitation of gas diffusion through the catalyst layer. Moreover, agglomeration of Pt in the Pt-SIPO-sSEBS/C cathode was not observed during a durability test at 150 °C for 6 days, although it was significant in the Pt-H3PO4/C cathode. Therefore, it is concluded that the Pt-SIPO-sSEBS/C electrode is a very promising cathode candidate for high-temperature PEMFCs.  相似文献   

18.
A novel activated mesocarbon microbead(aMCMB)/Mn3O4 composite is successfully prepared for electrochemical capacitors. The morphology and crystal structure of the composite are investigated by scanning electron microscopy and X-ray diffraction. The electrochemical studies indicate that the aMCMB/Mn3O4 composite has ideal capacitive performance in 1.0 mol L−1 LiPF6(EC + DMC). A maximum specific capacitance of 178 F g−1 is obtained for the composite via galvanostatic charge–discharge at a current density of 330 mA g−1, and the specific capacitance of Mn3O4 is estimated to be as high as 445 F g−1. The aMCMB/Mn3O4 composite material exhibits ideal capacitive behavior indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

19.
Carbon nanotube (CNT) containing electrocatalysts, Pt/Sn/PMo12/CNT, Pt/Sn/CNT, and Pt/CNT, were prepared by a microwave-heated polyol process. The electrocatalysts were characterized by X-ray diffraction, energy dispersive spectroscopy, scanning and transmission electron microscopy, and cyclic voltammetry. We found that the addition of PMo12 can help Pt-Sn nanoparticles to disperse very uniformly on the outer walls of CNTs. The Pt/Sn/PMo12/CNT catalyst exhibited the lowest onset potential for electro-oxidation of adsorbed C intermediates, compared to the Pt/Sn/CNT and Pt/CNT catalysts. It also generated much higher current density for methanol oxidation at room temperature compared to Pt/Sn/CNT and Pt/CNT catalysts, which were prepared by the same method.  相似文献   

20.
Three kinds of surface modifications were carried out on LiNi1/2Mn3/2O4 thin-films to improve the charge and discharge characteristics of LiNi1/2Mn3/2O4 positive electrodes. Among them, Zr(OBu)4/poly(methyl methacrylate) (PMMA)-treated LiNi1/2Mn3/2O4 thin-film electrodes showed charge and discharge efficiency of 80–84% in the first cycle, which was much higher than that for an untreated LiNi1/2Mn3/2O4 thin-film electrode (73%). The values of the charge and discharge efficiency were still higher than that for an untreated electrode after the 30th cycle. The charge and discharge curves gave two plateaus at around 4.72 and 4.76 V, which were very similar to those for the untreated electrode. Ac impedance spectroscopy revealed that the surface film resistance should not increase by Zr(OBu)4/PMMA treatment. XPS measurements suggest that a composite layer should be formed on a LiNi1/2Mn3/2O4 thin-film electrode from PMMA and Zr(OBu)4-derived compounds introducing an electrolyte. This composite layer was lithium-ion conductive, and was sustainable enough to suppress subsequent decomposition of an electrolyte at potentials as high as 4.7 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号