首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrogen sensors have been fabricated from highly ordered TiO2 nanotube arrays through anodization of a Ti substrate in an ethylene glycol solution containing NH4F. The vertically oriented TiO2 nanotube arrays containing Pt electrodes exhibit an ability to detect a wide-range of hydrogen concentrations at room temperature. On exposure to 2000 ppm (parts per million) hydrogen, the sensors exhibit seven orders of magnitude change in resistance with a response time of 13 s at room temperature. The TiO2 nanotube arrays sensor equipped with Pt electrodes exhibited a diode-type current–voltage (I–V) characteristic in air, but nearly ohmic behavior in hydrogen balanced with argon. A significant response to hydrogen was observed without the presence of oxygen in the base atmosphere. The response of two kinds of sensors with either Pt or Pt/Ti electrodes to 500 ppm hydrogen was measured and the results suggested that the excellent hydrogen sensing properties in air resulted primarily from the variation of the Schottky barrier height at the Pt/TiO2 interface.  相似文献   

2.
Mesoporous TiO2/AC, Pt/TiO2 and Pt/TiO2/AC (AC = activated carbon) nanocomposites were synthesized by functionalizing the activated carbon using acid treatment and sol–gel method. Photochemical deposition method was used for Pt loading. The nano-photocatalysts were characterized using XRD, SEM, DRS, BET, FTIR, XPS, CHN and ICP methods. The hydrogen production, under UV light irradiation in an aqueous suspension containing methanol has been studied. The effect of Pt, methanol and activated carbon were investigated. The results show that the activated carbon and Pt together improve the hydrogen production via water splitting. Also methanol acts as a good hole scavenger. Mesoporous Pt/TiO2/AC nanocomposite is the most efficient photocatalyst for hydrogen production compared to TiO2/AC, Pt/TiO2 and the commercial photocatalyst P25 under the same photoreaction conditions. Using Pt/TiO2/AC, the rate of hydrogen production is 7490 μmol (h g catal.)−1 that is about 75 times higher than that of the P25 photocatalyst.  相似文献   

3.
Photoactive membranes coated with TiO2 and Pt/TiO2 nanostructured thin films were produced by one-step deposition of gas phase nanoparticles on glass fiber filters. Pt/TiO2 nanoparticles (0–1.5 wt.% Pt content) were produced by flame spray pyrolysis, starting from liquid solutions of the Ti and Pt precursors, and then expanded in a supersonic beam to be deposited on the filters. The nanostructured coatings were composed of crystalline nanoparticles (mainly anatase phase), without any need of post-deposition annealing. The so obtained photocatalytic membranes were tested in hydrogen production by photo-steam reforming of ethanol in an expressly set-up diffusive photoreactor. The reaction rate was found to increase with increasing the Pt content in the photoactive material, up to 1.5 wt.% Pt. The use of these membranes allowed a significant increase of the hydrogen production rate compared to that obtained with the same photoactive Pt/TiO2 films deposited on a quartz substrate.  相似文献   

4.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

5.
The electrochemical activity and thermal stability of the Pt/TiO2-C were evaluated in the oxygen reduction reaction (ORR) in acid medium at different temperatures. The platinum was selectively deposited onto the TiO2 (Ebg = 2.3 eV) by the photo-irradiation of platinum precursor (Pt4+→Pt0). The Pt/TiO2-C electrocatalyst prepared was characterized by XRD, TEM/EDS, cyclic and lineal voltammetry techniques. TEM images indicated that platinum nanoparticles (<5 nm) were deposited in agglomerates form around the oxide sites. EDS and XRD results confirm the composition and crystalline structure of Pt/TiO2-C. The thermal stability and electrochemical activity of the Pt/TiO2-C for ORR at different temperatures (298–343 K) is higher than Pt/C commercial sample (Pt-Etek). A more favorable apparent enthalpy of activation for Pt/TiO2-C was greatly influenced by addition of oxide in the catalyst compare to Pt-Etek. Single H2/O2 fuel cell performance results of Pt/TiO2-C show an improvement of the power density with the increase of the temperature.  相似文献   

6.
Highly-ordered TiO2 nanotube arrays (TNTAs) were fabricated on Ti sheets by electrochemical anodization. Uniform Pt nanoparticles with an average diameter of 3 nm could be successfully located on the TiO2 nanotubes on only one side (Pt/TNTAs) or both sides of the Ti sheet (Pt/TNTAs/Pt). Pt/TNTAs, the single-sided Pt deposited TNTAs, could be directly used to split water without a counter electrode. The hydrogen evolution rate can reach 120 μmol h−1 cm−2 in a mixed solution of 0.5 M Na2SO4 and 0.5 M ethylene glycol without any applied bias, which is six times of that by the pure TNTAs. In comparison to the traditional three electrode system, this single-sided Pt deposited TNTAs is a much more simple and efficient water splitting system. Meanwhile, the photoelectrical conversion mechanism has been investigated in detail.  相似文献   

7.
A series of reduced graphene oxide/TiO2 (RGO/TiO2) nanowire microsphere composites were synthesized with a facile one-step hydrothermal method using TiCl3 and graphene oxide (GO) as the starting materials, during which the formation of TiO2 and the reduction of GO occur simultaneously. The obtained nanocomposites were characterized with X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy, respectively. UV–vis absorption spectra showed that the absorption edges of TiO2 were extended into visible light region with the addition of RGO. The photocatalytic activities of the samples with and without Pt as cocatalysts were evaluated by hydrogen evolution from water photo-splitting under UV–vis light illumination. Enhanced photocatalytic properties were observed for the as-prepared RGO/TiO2 nanocomposites. The amount of hydrogen evolution from the optimized photocatalyst reached to 43.8 μmol h−1, which was about 1.6 times as high as that of bare TiO2. The results shown here indicate a convenient and applicable approach to further exploitation of high activity materials for photocatalytic water splitting applications.  相似文献   

8.
In this report, graphene oxide (GO) nanosheets decorated with ultrafine Pd nanoparticles (Pd NPs) have been successfully fabricated through a reaction between [Pd2(μ-CO)2Cl4]2− and water in the presence of GO nanosheets without any surfactant or other reductant. The as-synthesized small Pd NPs with average diameter of about 4.4 nm were well-dispersed on the surface of GO nanosheets. The Pd/GO nanocomposites show remarkable catalytic activity toward the hydrogenation of p-nitrophenol at room temperature. The kinetic apparent rate constant (kapp) could reach about 34.3 × 10−3 s−1. Furthermore, the as-prepared Pd/GO nanocomposites could also be used as an efficient and stable catalyst for hydrogen production from hydrolytic dehydrogenation of ammonia borane (AB). The catalytic activity is much higher than the conventional Pd/C catalysts.  相似文献   

9.
Liquid organic hydrogen carrier (LOHC) is considered as a promising candidate for large-scale hydrogen storage. In this work, we found that Pt/TiO2 catalysts exhibited better catalytic activity and selectivity compared to Pd/TiO2 and commercial Pd/Al2O3 catalysts in the dehydrogenation of dodecahydro-N-ethylcarbazole (12H-NECZ) at 453 K. The catalytic activity of the noble metal catalysts followed the trend of Pt/TiO2 > Pd/TiO2 > Rh/TiO2 > Au/TiO2 > Ru/TiO2. Compared with the commercial Pd/Al2O3, Pt/TiO2 greatly improved the selectivity and conversion rate, the reaction time was also shortened. In addition, kinetics calculation was carried out to obtain fundamental reaction parameters. It was found that the third step of 4H-NECZ dehydrogenation to NECZ was the rate-limiting step of the entire dehydrogenation reaction for all catalysts.  相似文献   

10.
Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity was reduced to half, due to lower surface area of the irregular morphology in comparison with the ribbon-like morphology. The Pd–WO3/PRGO films showed an optimum sensitivity (∼10 folds better than the sensitivity of Pd–WO3/GO), and a fast response and recovery time (<1 min) at low temperature of 100 °C. Moreover, the Pd–WO3/PRGO-based gas sensor was sensitive to 20 ppm concentration of hydrogen gas at room temperature. The results confirmed the effect of residual oxygen-containing functional groups of PRGO on the growth and morphology of Pd–WO3 as well as gas sensing properties of metal oxide/graphene based hybrid nanostructures.  相似文献   

11.
Pt–Cu bimetallic nanoparticles supported on reduced graphene oxide (Pt–Cu/RGO) were synthesized through the simple one-step reduction of H2PtCl6 and CuSO4 in the presence of graphene oxide (GO) at room-temperature. The Pt–Cu/RGO was characterized with UV–vis spectrophotometer, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy and its catalytic behavior for the direct oxidation of methanol was investigated. Compared to Pt/RGO and Pt/C catalysts, Pt–Cu/RGO hybrids exhibited markedly superior catalytic activity for the electrocatalytic oxidation of methanol and ethanol. This improved catalytic activity can be attributed to the dendritic structure of the Pt–Cu bimetallic nanoparticles.  相似文献   

12.
Polyaniline (emeraldine)/anatase TiO2 nanocomposite (PA-NC) was prepared by a chemical oxidative polymerization. The thin films of PA-NC for hydrogen gas sensing application were deposited on Cu-interdigited electrodes by spin coating technique. A study on characteristics of PA-NC thin films was demonstrated by a porous cylindrical morphology. The response and response/recovery time of sensors for hydrogen gas were evaluated by the change of TiO2 wt% at environmental conditions. Resistance-sensing measurement was exhibited a high sensitivity about 1.63, a good Long-term response, low response time and recovery time about 83 s and 130 s, respectively, at 0.8 vol% hydrogen gas for PA-NC including 25% wt of anatase nanoparticles. The current–voltage characteristics of PA-NC gas sensors before and after hydrogen gas injection showed a nonlinear ohmic current. Moreover, we studied the formation of PA-NCs and their hydrogen gas sensing mechanism based on contact regions in PA-NC.  相似文献   

13.
Metal oxide semiconductor gas sensors of hydrogen with a typical capacitor-like Pt/TiO2/Pt electrode arrangement exhibit excellent sensitivity to hydrogen even at room temperature. At the same time, very similar Pt/TiO2/Pt cells can also be used as memristive elements exhibiting resistive switching between two resistive states, which has been recently exploited to create a gas sensor with built-in memory. Merging of these two functionalities within a single device also opens new possibilities for smart gas sensor arrays. However, so far such sensors have been prepared only on rigid substrates. In this work, a flexible hydrogen gas sensor with such capacitor-like Pt/TiO2/Pt electrode arrangement fabricated on polyimide foil is presented and characterized in terms of hydrogen gas sensing properties and bending endurance. The sensor exhibits high response (Rair/RH2) of more than 105 to 10 000 ppm H2 at 150 °C with minor decline at elevated humidity and is capable of room temperature operation. The lowest detected concentration was 3 ppm at 150 °C and 300 ppm at room temperature in dry conditions. Bending the sensor 105 times over diameter of 10 mm led to slight improvement of the sensing performance.  相似文献   

14.
Photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol–water mixture were carried out at room temperature. The TiO2 nanotubes synthesized by rapid breakdown anodization technique were loaded with Pt nanoparticles by chemical reduction of aqueous chloroplatinic acid solution using sodium borohydride. The chemisorption (active) surface area of the synthesized nanocomposites for hydrogen was measured by pulse chemisorption method using temperature programmed desorption reduction oxidation equipment and found to decrease with increase in platinum loading in the range 1–10 wt%. The platinum supported nanotube composites were characterized for phase and morphology by XRD, TEM and SEM. The hydrogen generated by the photocatalytic reduction of water from water–ethanol mixture at different wavelengths of incident light, using the Pt-TiO2 nanocomposite photocatalyst, was determined by using a proton exchange membrane based hydrogen meter. The highest hydrogen generation efficiency was observed at 1–2.5 wt% of Pt loading. The maximum photocatalytic hydrogen generation of 0.03 mol/h/g of Pt-TiO2 was observed with a 64 W UV light source (λ = 254 nm). The photoluminescence property of the Pt loaded TiO2 has been correlated with the hydrogen generation efficiency and the reaction mechanism briefly discussed.  相似文献   

15.
It is still a challenging task to achieve the rapid detection of hydrogen (H2) with the rapid development of hydrogen energy sector. In this work, the H2 sensing capabilities of pristine and Pd-modified SnO2 nanoparticles with the size of ~7 nm were systematically evaluated. The SnO2 nanoparticles were synthesized via hydrothermal method and Pd modification was performed using impregnation route. Pd modification remarkably upgraded the H2 sensing performances compared with the pristine SnO2 gas sensor. The working temperature of SnO2 decreased from 300 °C to 125 °C after Pd loading. Among the prepared Pd/SnO2 gas sensors, 0.50 at.% Pd/SnO2 sensor exhibited the highest response magnitude of 254 toward 500 ppm H2 and rapid response/recovery time of 1/22 s at 125 °C. The enhanced H2 sensing capabilities by Pd modification may be related to the catalytic effect and the resistance modulation.  相似文献   

16.
The utilization of solar energy for the conversion of water to hydrogen and oxygen has been considered to be an efficient strategy to solve crisis of energy and environment. Here, we report the synthesis of reduced graphene oxide–TiO2 nanoparticle composite system through the photocatalytic reduction of graphite oxide using TiO2 nanoparticles. Photoelectrochemical characterizations and hydrogen evolution measurements of these nanocomposites reveal that the presence of graphene enhances the photocurrent density and hydrogen generation rate. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm−2 and 127.5 μmole cm−2h−1 in 0.5 M Na2SO4 electrolyte solution under 1.5AM solar irradiance of white light with illumination intensity of 100 mW cm−2. In graphene–TiO2 nanocomposite, photogenerated electrons in TiO2 are scavenged by graphene sheets and percolate to counter electrode to reduce H+ to molecular hydrogen thus increasing the performance of water-splitting reaction.  相似文献   

17.
Though less frequently studied for solar-hydrogen production, films are more convenient to use than powders and can be easily recycled. Anatase TiO2 films decorated with Ag nanoparticles are synthesized by a rapid, simple, and inexpensive method. They are used to cleave water to produce H2 under UV light in the presence of methanol as a hole scavenger. A simple and sensitive method is established here to monitor the time course of hydrogen production for ultralow amounts of TiO2. The average hydrogen production rate of Ag/TiO2 anatase films is 147.9 ± 35.5 μmol/h/g. Without silver, it decreases dramatically to 4.65 ± 0.39 μmol/h/g for anatase TiO2 films and to 0.46 ± 0.66 μmol/h/g for amorphous TiO2 films fabricated at room temperature. Our method can be used as a high through-put screening process in search of high efficiency heterogeneous photocatalysts for solar-hydrogen production from water-splitting.  相似文献   

18.
The electrochemical hydrogen storage of expanded graphite (EG) decorated with TiO2 nanoparticles (NPs) calcined at different temperatures has been investigated with the galvanostatic charge and discharge method. The TiO2 NPs are deposited on and between the graphene-like nanosheets of EG by a sol-gel method. The morphology, structure, composition, and specific surface area of the samples were characterized. The electrochemical measurement reveals that the EG decorated with TiO2 NPs calcined at 500 °C has a discharge capacity of 373.5 mAh/g which is 20 times higher than that of pure EG and quite appealing for the battery applications. The mechanism of enhancement of the electrochemical activity for the TiO2-decorated EG could be attributed to the preferable redox ability and photocatalytic property of TiO2 NPs.  相似文献   

19.
In present study, we report a facile synthesis of crystalline, small size Pd nanoparticles (NPs) on reduced graphene oxide (RGO) abbreviated as Pd/RGO for electrocatalytic oxidation of formic acid (FA). Here, first graphene oxide (GO) was reduced by the green method using l-ascorbic acid and citric acid and further Pd NPs were decorated on RGO by a facile method without using any reducing agents. The reduction of GO to RGO and synthesis of Pd NPs was confirmed by the X-ray diffraction (XRD) and X-ray photoelectrons (XPS) techniques. Surface morphology of Pd/RGO nanocomposite was evaluated by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The electrocatalytic behavior of Pd/RGO nanocomposite was tested by using of cyclic voltammetric (CV) technique for electro-oxidation of FA in mixed solution of 0.5 M HCOOH + 0.5 H2SO4 at RT. Results shows that the higher electrocatalytic activity of Pd/RGO nanocomposite compare to Pd NPs.  相似文献   

20.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号