首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Hydrogen storage properties and mechanisms of the combined Mg(BH4)2–NaAlH4 system were investigated systematically. It was found that during ball milling, the Mg(BH4)2–xNaAlH4 combination converted readily to the mixture of NaBH4 and Mg(AlH4)2 with a metathesis reaction. The post-milled samples exhibited an apparent discrepancy in the hydrogen desorption behavior with respect to the pristine Mg(BH4)2 and NaAlH4. Approximately 9.1 wt% of hydrogen was released from the Mg(BH4)2–2NaAlH4 composite milled for 24 h with an onset temperature of 101 °C, which is lowered by 105 and 139 °C than that of NaAlH4 and Mg(BH4)2, respectively. At initial heating stage, Mg(AlH4)2 decomposed first to produce MgH2 and Al with hydrogen release. Further elevating operation temperatures gave rise to the reaction between MgH2 and Al and the self-decomposition of MgH2 to release more hydrogen and form the Al0.9Mg0.1 solid solution and Mg. Finally, NaBH4 reacted with Mg and partial Al0.9Mg0.1 to liberate all of hydrogen and yield the resultant products of MgAlB4, Al3Mg2 and Na. The dehydrogenated sample could take up ∼6.5 wt% of hydrogen at 400 °C and 100 atm of hydrogen pressure through a more complicated reaction process. The hydrogenated products consisted of NaBH4, MgH2 and Al, indicating that the presence of Mg(AlH4)2 is significantly favorable for reversible hydrogen storage in NaBH4 at moderate temperature and hydrogen pressure.  相似文献   

2.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

3.
The structures and dehydrogenation properties of pure and Ti/Ni-doped Mg(AlH4)2 were investigated using the first-principles calculations. The dopants mainly affect the geometric and electronic structures of their vicinal AlH4 units. Ti and Ni dopants improve the dehydrogenation of Mg(AlH4)2 in different mechanisms. In the Ti-doped case, Ti prefers to occupy the 13-hedral interstice (TiiA) and substitute for the Al atom (TiAl), to form a high-coordination structure TiHn (n = 6, 7). The Ti 3d electrons hybridize markedly with the H 1s electrons in TiAl and with the Al 3p electrons in TiiA, which weakens the Al–H bond of adjacent AlH4 units and facilitates the hydrogen dissociation. A TiAl3H13 intermediate in TiiA is inferred as the precursor of Mg(AlH4)2 dehydrogenation. In contrast, Ni tends to occupy the octahedral interstice to form the NiH4 tetrahedron. The tight bind of the Ni with its surrounding H atoms inhibits their dissociation though the nearby Al–H bond also becomes weak. Therefore, Ti is the better dopant candidate than Ni for improving the dehydrogenation properties of Mg(AlH4)2 because of its abundant activated hydrogen atoms and low hydrogen removal energy.  相似文献   

4.
A significant decrease in the dehydrogenation temperature of Mg(AlH4)2 was achieved by low-energy ball milling with TiF4. Approximately 8.0 wt% of hydrogen was released from the Mg(AlH4)2-0.025TiF4 sample with an on-set temperature of 40 °C, which represents a decrease of 75 °C relative to pristine Mg(AlH4)2. In contrast to the three-step reaction for pristine Mg(AlH4)2, hydrogen desorption from the TiF4-doped sample involves a two-step process because the Ti-based species participates in the dehydrogenation reaction. The presence of TiF4 alters the nucleation and growth of the dehydrogenation product, significantly decreasing the activation energy barrier of the first step in the dehydrogenation of Mg(AlH4)2. Further hydrogenation measurements revealed that the presence of the Ti-based species was also advantageous for hydrogen uptake, as the on-set hydrogenation temperature was only 100 °C for the dehydrogenated TiF4-doped sample, compared with 130 °C for the additive-free sample.  相似文献   

5.
In this study, we report the hydrogen absorption/desorption properties and reaction mechanism of the MgH2-NaAlH4 (4:1) composite system. This composite system showed improved dehydrogenation performance compared with that of as-milled NaAlH4 and MgH2 alone. The dehydrogenation process in the MgH2-NaAlH4 composite can be divided into four stages: NaAlH4 is first reacted with MgH2 to form a perovskite-type hydride, NaMgH3 and Al. In the second dehydrogenation stage, the Al phase reacts with MgH2 to form Mg17Al12 phase accompanied with the self-decomposition of the excessive MgH2. NaMgH3 goes on to decompose to NaH during the third dehydrogenation stage, and the last stage is the decomposition of NaH. Kissinger analysis indicated that the apparent activation energy, EA, for the MgH2-relevent decomposition in MgH2-NaAlH4 composite was 148 kJ/mol, which is 20 kJ/mol less than for as-milled MgH2 (168 kJ/mol). X-ray diffraction patterns indicate that the second, third, and fourth stages are fully reversible. It is believed that the formation of Al12Mg17 phase during the dehydrogenation process alters the reaction pathway of the MgH2-NaAlH4 (4:1) composite system and improves its thermodynamic properties.  相似文献   

6.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

7.
MgH2-Li3AlH6 mixture shows a mutual activation effect between the components. But the dehydrogenation kinetics is still slow, especially at temperature as low as 250 °C. Hereby, an additive (TiF3) was introduced into the mixture in the present study. The reaction mechanisms were studied by the combined analyses of X-ray diffraction (XRD), thermogravimetric analysis (TGA), as well as thermodynamic calculations. A two-step ball milling method could reduce the mechanical decomposition of Li3AlH6 effectively and was adopted. During milling, Li3AlH6 reacts with TiF3 and produces Al3Ti while MgH2 remains stable. All the species are well mixed after milling and the grain size is as small as 100 nm. During TGA test, all the reactions occur at lower temperatures compared with undoped mixture, especially the dehydrogenation of MgH2, which shows a decrease of 60 °C. Its activation energy is reduced by 32.0 kJ mol−1. The first three isothermal (250 °C) cycles indicate that the kinetics of dehydrogenation has been greatly enhanced, showing a reversible capacity of 4.5 wt.% H2. The time needed for the 1st dehydrogenation has been shortened to 3600 s from 8000 s for the undoped mixture. These improvements are mainly attributed to the catalytic effect of the in-situ formed Al3Ti. But there is no influence on the rehydrogenation kinetics and the enthalpy of the dehydrogenation of MgH2 is unchanged.  相似文献   

8.
While borohydrides, such as NaBH4, were often used as supplements to improve hydrogen storage properties of Mg/MgH2 systems, they have long suffered from high decomposition temperature and irreversible dehydrogenation process. Here, we report that NaBH4 can reversibly serve as a hydrogen storage host and reactant for Mg/MgH2 systems under mild reaction conditions with the help of Al/AlH3. 90 wt%MgH2–5 wt.%AlH3–5 wt.%NaBH4 (M-5AB) has been successfully synthesized using the conventional mechanical alloying technique. The dehydrogenation activation energy and enthalpy are 20% and 9% reduced than those of pure Mg/MgH2. After 10 hydrogen absorption and desorption cycles, the hydrogen storage capacity of M-5AB can reach 6.35 wt%. The X-ray diffraction (XRD) and the transmission electron microscope (TEM) measurements revealed that the interface of additives and Mg/MgH2 decompose to Mg17Al12, MgAlB4 and NaH phases. The Mg17Al12 and MgAlB4 phases reduces the barrier of free energies of hydrogenated and dehydrogenated states, helping NaBH4 to recover after rehydrogenation. These discoveries indicate that Al species can boost the decomposition and reformation of NaBH4, providing a wider degree of freedom for the material design of Mg-based hydrogen storage materials.  相似文献   

9.
Supersaturated Mg(Al) solid solutions with reduced lattice constants were successfully prepared by ball milling Mg and Al powder mixtures. The microstructure and phase transition were investigated by XRD. The results indicated that disproportionation of supersaturated Mg(Al) solid solution to MgH2 and Al was caused by hydrogenation, then equilibrium Mg(Al) solid solution formed after dehydrogenation, while the intermetallic compound Mg17Al12 reversibly decomposed to MgH2 and intermediate phase Al3Mg2 which could further decompose to MgH2 and Al by hydriding. These reversible phase transitions make Mg–Al alloys show an observably lowered de/hydriding enthalpy and activation energy in comparison with pure Mg.  相似文献   

10.
A novel hydrogen storage composite system, MgH2–Na3AlH6 (4:1), was prepared by mechanochemical milling, and its hydrogen storage properties and reaction mechanism were studied. Temperature-programmed desorption results showed that a mutual destabilization effect exists between the components. First, Na3AlH6 reacts with MgH2 to form a perovskite-type hydride, NaMgH3, Al, and H2 at a temperature of about 170 °C, which is about 55 °C lower than the decomposition temperature of as-milled Na3AlH6. Then, at a temperature of about 275 °C, the as-formed Al can destabilize MgH2 to form the intermetallic compound Mg17Al12, which is accompanied by the self-decomposition of the residual MgH2. This temperature is about 55 °C lower than the decomposition temperature for as-milled MgH2. Furthermore, when heated up to 345 °C, NaMgH3 starts to decompose into NaH, Mg, and H2, which is followed by the decomposition of NaH at a temperature of about 370 °C. Rehydrogenation processes show that Mg17Al12 and NaMgH3 are fully reversible. It is believed that the Mg17Al12 and NaMgH3 formed in situ provide synergetic thermodynamic and kinetic destabilization, leading to the dehydrogenation of MgH2, which is responsible for the distinct reduction in the operating temperatures of the as-prepared MgH2–Na3AlH6 (4:1) composite system.  相似文献   

11.
Mg(AlH4)2 and CaAlH5 were synthesized by direct ball milling of AlH3 and MgH2 or AlH3 and CaH2 hydrides. The XRD profiles indicated crystalline compounds. Several ball-milling conditions were studied and the optimum parameters were found. Among these, the key parameter is the pause used to cool down the milling device, which allows reducing the temperature rise during milling. Thus, the maximum yield of complex hydrides was obtained by minimizing the desorbed alane amount. The decomposition properties were studied and were in agreement with those reported for different synthesis methods. Mg(AlH4)2 with a good hydrogen capacity and a decomposition reaction enthalpy close to 0 kJ/mol H2 can be a candidate for one-way storage systems. As for CaAlH5, it might be suitable for reversible hydrogen storage thanks to its dehydrogenation reaction enthalpy (26 kJ/mol H2). However, rather high activation energy values were evaluated for both compounds (119 and 161 kJ/mol, respectively).  相似文献   

12.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

13.
To improve the hydrogen storage property of LiBH4, the LiBH4/Ca(AlH4)2 reactive systems with various ratios were constructed, and their de-/hydrogenation properties as well as the reaction mechanisms were investigated experimentally. It was found that the sample with the LiBH4 to Ca(AlH4)2 molar ratio of 6:1 exhibits the best comprehensive hydrogen storage properties, desorbing hydrogen completely (8.2 wt.%) within 35 min at 450 °C and reversibly absorbing 4.5 wt.% of hydrogen at 450 °C under a hydrogen pressure as low as 4.0 MPa. During the first dehydrogenation process of the LiBH4/Ca(AlH4)2 systems, the CaH2 and Al particles were in situ precipitated via the self-decomposition of Ca(AlH4)2, and then reacted with LiBH4 to form CaB6, AlB2 and LiH. Whereafter, the sample can cycle between LiBH4 + Ca(BH4)2 + Al in the hydrogenated state and CaB6 + AlB2 + LiH in the dehydrogenated state.  相似文献   

14.
The crystal structures, electronic and dehydrogenation properties of TiB2 cluster-doped NaAlH4 (101) surface have been investigated by the first-principles density functional theory method. In the TiB2 cluster-doped NaAlH4 (101) surface, a Ti-centered TiB2–Al2H8–AlH5–AlH3 complex is observed, and the AlH3 and (AlH5)2− units in the TiB2–Al2H8–AlH5–AlH3 favor the first-step decomposition reaction of NaAlH4. The calculated electronic properties show that B–Ti bonds are stronger than B–Al and Ti–H bonds, which demonstrates that TiB2 does not change its configuration in catalyzing the decomposition reaction of NaAlH4. The results of hydrogen desorption energies imply that the import of TiB2 makes the strength of Al–H bonds decreases. Therefore, the removal of H atoms, especially the removal of H atoms in the Ti–H–Al bonds is easier in the TiB2 cluster-doped NaAlH4 than in pure NaAlH4.  相似文献   

15.
The present paper reports the effect of graphitic nanofibres (GNFs) for improving the desorption kinetics of LiMg(AlH4)3 and LiAlH4. LiMg(AlH4)3 has been synthesized by mechano-chemical metathesis reaction involving LiAlH4 and MgCl2. The enhancement in dehydrogenation characteristics of LiMg(AlH4)3 has been shown to be higher when graphitic nanofibres (GNFs) were used as catalyst. Out of two different types of nanofibres namely planar graphitic nanofibre (PGNF) and helical graphitic nanofibre (HGNF), the latter has been found to act as better catalyst. We observed that helical morphology of fibres improves the desorption kinetics and decreases the desorption temperature of both LiMg(AlH4)3 and LiAlH4. The desorption temperature for 8 mol% HGNF admixed LiAlH4 gets lowered from 159 °C to 128 °C with significantly faster kinetics. In 8 mol% HGNF admixed LiMg(AlH4)3 sample, the desorption temperature gets lowered from 105 °C to ∼70 °C. The activation energy calculated for the first step decomposition of LiAlH4 admixed with 8 mol% HGNF is ∼68 kJ/mol, where as that for pristine LiAlH4 it is 107 kJ/mol. The activation energy calculated for as synthesized LiMg(AlH4)3 is ∼66 kJ/mol. Since the first step decomposition of LiMg(AlH4)3 occurs during GNF admixing, the activation energy for initial step decomposition of GNF admixed LiMg(AlH4)3 could not be estimated.  相似文献   

16.
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2.  相似文献   

17.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

18.
Mg(BH4)2 has been considered as one of the promising light metal complex hydrides due to its high hydrogen capacity and low cost. But its higher thermal stability (dehydrogenation at above 300 °C) needs to be improved for the practical application. In this study, the aluminum hydride AlH3 was introduced into complex borohydride Mg(BH4)2 to synthesize a new Mg(BH4)2AlH3 composite by ball milling method. It is found that the active Al1 formed from the self-decomposition of AlH3 can effectively improve the dehydrogenation properties of Mg(BH4)2, the Mg(BH4)2AlH3 composite starts to release hydrogen at 130.8 °C with a total hydrogen capacity of 11.9 wt.%. The dehydrogenated products of the composite is composed of Mg2Al3 and B at 350 °C, resulting in the improved hydrogen desorption properties of Mg(BH4)2AlH3 composite. The Mg2Al3 and B products would be further transformed into MgAlB4 and Al at 500 °C. Moreover, the Mg2Al3 and B dehydrogenated products show better reversible hydrogen storage property than that of the MgAlB4 and Al products. This research shows a way to alter hydrogen de/hydrogenation route and reversibility of Mg(BH4)2 complex hydride by compositing with AlH3 and controlling the dehydrogenation temperature.  相似文献   

19.
A Mg(In, Y) ternary solid solution was successfully synthesized by two-step method, namely sintering the elemental powders and subsequent milling. The formation of Mg(In, Y) indicates that the solubility of Y in the Mg lattice is expanded due to the existence of In. The as-synthesized Mg90In5Y5 solid solution transformed to MgH2, YH3, In3Y and MgIn compound upon hydrogenation, the hydrogenated products except for the YH3 recovered to Mg(In, Y) solid solution after dehydrogenation. The Mg90In5Y5 solid solution exhibited a decreased reaction enthalpy of 62.9 kJ/(mol H2), reduction by ca. 5 kJ/(mol H2) or 12 kJ/(mol H2) than the Mg95In5 binary solid solution and pure Mg, respectively. The working temperature as well as the activation energies for the hydriding and dehydriding were also decreased in comparison with those of Mg(In) binary solid solution, which are attributed to the reduced reaction enthalpy and the catalytic role of YH3. Our work indicates that the thermodynamic and kinetic tuning of MgH2 are realized in the Mg(In, Y) ternary solid solution.  相似文献   

20.
The hydrogenation/dehydrogenation characteristics and hydrogen storage properties of nominal Mg3Ag and Mg3Y alloys prepared by induction melting were investigated. The as-melted Mg3Ag alloy was composed of Mg54Ag17 phase, while Mg3Y consisted of Mg24Y5 and Mg2Y phases. Mg54Ag17 transformed into MgAg and MgH2 during the first hydrogenation, and the phase transition of the following hy/dehydrogenation cycles was Mg3Ag + 2H2 ↔ MgAg + 2MgH2. Both Mg24Y5 and Mg2Y undertook disproportion reactions and decomposed into MgH2 and YH3. Experimental and calculated results demonstrated that there was no necessary relation between the thermodynamic stabilities and the size interstices in these alloys. The dehydrogenation enthalpy change (ΔH) and entropy change (ΔS) of Mg3Ag were calculated and compared with that of pure Mg, which indicated that the increase of ΔS could counteract the stabilization effect of ΔH, which offered a method for tuning the thermodynamic properties of Mg-based alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号