首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuel cell visualization is an ongoing challenge in the world of hydrogen-based research. Neutron tomography is a powerful tool for acquiring otherwise unattainable information about the inner workings of a proton exchange membrane fuel cell. Advanced neutron imaging methods allow for validation of both cell design and run methods. The tomography techniques discussed in this paper show how 3D visualization provides a clear view of flow channel activity for water management analysis. A brief intro to tomography is explained via its mathematical construction, outlining how 2D radiographs can be reconstructed and layered to form 3D visualizations. The low attenuation aluminum cell designs used for imaging are described focusing on how they are specifically tailored for neutron tomography. Images of the flow channel and water distributions are shown in cross-sections throughout the cell, both perpendicular and along the channel length. Finally, 3D tomography images of the cell are shown, with the bipolar aluminum plates signal subtracted revealing a 3D water distribution of both cathode and anode layers.  相似文献   

2.
This study investigated the phenomenon of water freezing below freezing point in polymer electrolyte fuel cells (PEFCs). To understand the details of water freezing phenomena inside a PEFC, a system capable of cross-sectional imaging inside the fuel cell with visible and infrared images was developed. Super-cooled water freezing phenomena were observed under different gas purge conditions. The present test confirmed that super-cooled water was generated on the gas diffusion layer (GDL) surface and that water freezing occurs at the interface between the GDL and MEA (membrane electrode assembly) at the moment cell performance deteriorates under conditions when remaining water was dry enough inside the fuel cell before cold starting. Moreover, using infrared radiation imaging, it was clarified that heat of solidification spreads at the GDL/MEA interface at the moment cell performance drops. Compared with a no-initial purge condition, liquid water generation was not confirmed to cause ice growth at the GDL/MEA interface after cell performance deterioration. Each condition indicated that ice formation at the GDL/MEA interface causes cell performance deterioration. Therefore, it is believed that ice formation between the GDL/MEA interface causes air gas stoppage and that this blockage leads to a drop in cell performance.  相似文献   

3.
The technical barriers for commercialization of polymer electrolyte membrane fuel cell (PEMFC) are the startup ability and survivability at sub-zero temperatures. Ice formation causes cold start fail and volume change damages the cell components leading to performance decay. Many strategies are used to assist successful cold start and to reduce the performance decay. But, unassisted cold start is very crucial and needs attention. Here, an experimental protocol is reported for successful unassisted cold start using low temperature gas purging at various temperatures (-5,-8,-10,-15, and -20 °C) as well as to recover temporary performance decay. The stability of the membrane electrode assembly is also studied in freeze/thaw and sequential cold start cycles. At temperature −10 °C, there is small performance decay after the 6th freeze/thaw cycle. However, the subsequent cold start cycle shows significant performance decay after the 6th cycle. Changes in microstructures and loss of hydrophobicity in the gas diffusion layer are attributed to the performance decay in both freeze/thaw and sequential cold start cycles. The effect of cold start temperature on the performance of a PEMFC in subsequent freeze/thaw cycles is also studied. It shows that depending upon the start-up temperature, the preferential ice formation can affect the performance decay characteristics.  相似文献   

4.
A three-axis vibration platform is first constructed and utilized in the investigation of the effects of mechanical vibration on the cold start performance of a proton exchange membrane (PEM) fuel cell. In addition, an intermittent pattern of purging is adopted to improve the purging efficiency. The applied vibrations are found to promote water dispersion, but ultimately do not enhance water removal. Under subzero conditions (−13 °C), the vibration of the fuel cell improves cold start performance via delayed freezing, especially when vibrating at the fuel cell natural frequency (10 Hz). With an increase in vibration amplitude, the freezing rate is found to be slow and eventually plateau. Finally, the vibration in the vertical axis is found to play a positive role in improving cold start performance; the effects of other orientations depend on the startup temperature. The result of cold start under vibration might indirectly prove the existence of super-cooled water.  相似文献   

5.
A polymer electrolyte membrane fuel cell (PEM FC) system as a power source used in mobile applications should be able to produce electric power continuously and dynamically to meet the demand of the driver by consuming the fuel, hydrogen. The hydrogen stored in the tank is supplied to the anode of the stack by a fuel delivery system (FDS) that is comprised of supply and recirculation lines controlled by different actuators. Design of such a system and its operation should take into account several aspects, particularly efficient fuel usage and safe operation of the stack.  相似文献   

6.
One key issue in high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack development is heat removal at the operating temperature of 140–180 °C. Conventionally, this process is done using coolants such as thermooil, steam or pressurized water. In this contribution, external liquid cooling designs are described, which are avoiding two constraints. First, in the cell active area, no liquid coolant is present avoiding any sealing problems with respect to the electrode. Secondly, the external positioning allows high temperature gradients between the heat removal zone and the active area resulting in a good adjustability of appropriate reformate conversion temperatures (e.g. 160 °C) and a more compact cell design. Different design concepts were investigated using modeling techniques and a selection of them has also been investigated experimentally. The experiments proved the feasibility of the external cooling design and showed that the temperature gradients within the active area are below 15 K under typical operating conditions.  相似文献   

7.
A novel micro-porous layer (MPL) is designed to enhance the cold-start capability of a polymer electrolyte fuel cell (PEFC). The concept of designing an MPL is to expand the ice storage capacity of the electrode into the MPL region. We impose proton conduction capability and the oxygen reduction reaction (ORR) kinetic activity on the MPL via controlling the platinum (Pt) loading, ionomer fraction and weight ratio of Pt to the carbon support (wt%PtC) of the MPL. Therefore, the MPL is dual-functional, and can work as a typical MPL for normal PEFC operations and as a part of the cathode catalyst layer (CL) for cold-start operations. Three-dimensional (3-D) cold-start simulations are carried out by using a 3-D cold-start model developed in a previous study [1]. The detailed simulation results clearly suggest that the cold-start operational time can be extended significantly using a dual-function MPL, and the extended time is directly proportional to the pore volume of the MPL for ice storage. This study provides a new strategy to enhance the cold-start capability of a PEFC by properly designing and optimizing the MPL.  相似文献   

8.
We present a theoretical study on the effects of key catalyst layer (CL) design parameters on the cold start behavior of a polymer electrolyte fuel cell (PEFC) using a three-dimensional transient cold start model developed in a previous study 1 and 2. Among several CL design parameters, we adopt the ionomer fraction (?I) and weight ratio of Pt to carbon support (wt%PtC) in the cathode CL as CL design variables for this study. Therefore, other design parameters such as CL thickness and the oxygen reduction reaction (ORR) kinetic parameter are accordingly adjusted due to changes in ?I and wt%PtC for cold start simulations. The calculated results confirm that these two design parameters provide control of the ice storage capacity and water absorption potential of the cathode CL, and consequently have a substantial influence on the cold start behavior of a PEFC. We provide a guideline to design and optimize a cathode CL and membrane electrode assembly (MEA) for improved PEFC cold start capability.  相似文献   

9.
In the present work, a model-based parametric analysis of the performance of a direct ethanol polymer electrolyte membrane fuel cell (DE-PEMFC) is conducted with the purpose to investigate the effect of several parameters on the cell's operation. The analysis is based on a previously validated one-dimensional mathematical model that describes the operation of a DE-PEMFC in steady state. More precisely, the effect of several operational and structural parameters on (i) the ethanol crossover rate from the anode to the cathode side of the cell, (ii) the parasitic current generation (mixed potential formation) and (iii) the total cell performance is investigated. According to the model predictions it was found that the increase of the ethanol feed concentration leads to higher ethanol crossover rates, higher parasitic currents and higher mixed potential values resulting in the decrease of the cell's power density. However there is an optimum ethanol feed concentration (approximately 1.0 mol L−1) for which the cell power density reaches its highest value. The platinum (Pt) loading of the anode and the cathode catalytic layers affects strongly the cell performance. Higher values of Pt loading of the catalytic layers increase the specific reaction surface area resulting in higher cell power densities. An increase of the anode catalyst loading compared to an equal one of the cathode catalyst loading has greater impact on the cell's power density. Another interesting finding is that increasing the diffusion layers’ porosity up to a certain extent, improves the cell power density despite the fact that the parasitic current increases. This is explained by the fact that the reactants’ concentrations over the catalysts are increased, leading to lower activation overpotential values, which are the main source of the total cell overpotentials. Moreover, the use of a thicker membrane leads to lower ethanol crossover rate, lower parasitic current and lower mixed potential values in comparison to the use of a thinner one. Finally, according to the model predictions when the cell operates at low current densities the use of a thick membrane is necessary to reduce the negative effect of the ethanol crossover. However, in the case where the cell operates at higher current densities (lower ethanol crossover rates) a thinner membrane reduces the ohmic overpotential leading to higher power density values.  相似文献   

10.
The effect of ionomer/carbon (I/C) ratio on proton exchange membrane (PEM) fuel cell cold start is investigated experimentally with theoretical water transport analysis. The scanning electron microscope (SEM) images show larger agglomerates and smaller effective reaction area by increasing the I/C ratio from 0.7 to 1.7. For normal operation, increasing the I/C ratio can improve the humidity tolerance, especially in the cathode. For cold start >?10 °C, a lower I/C ratio leads to better performance because the core reaction area is shifted towards the membrane, leading to more membrane water absorption and slower ice formation. For <?15 °C, the total water production is low and almost the same for the different I/C ratios because the ice formation takes place before effective membrane water absorption; and although the cathode catalyst layer (CL) and micro-porous layer (MPL) can provide sufficient space to store all the ice, higher I/C ratios (e.g. 1.2) still cause more ice formation in GDL and flow channel because the core reaction area becomes closer to GDL. The results show that the CL design has significant effect on the cold start performance, and there is a potential for further improvement.  相似文献   

11.
It is common knowledge that efficiency of fuel cells is highest when no electric current is produced while when the fuel cell is really working, the efficiency is reduced by dissipation. In this paper the relation between efficiency and dissipation inside the fuel cell is formulated within the framework of classical irreversible thermodynamics of mixtures. It is shown that not only dissipation influences the efficiency but that there are also some other terms which become important if there are steep temperature gradients inside the fuel cell. Indeed, we show that the new terms are negligible in polymer-electrolyte membrane fuel cells while they become important in solid oxide fuel cells. In summary, this paper presents a formulation of non-equilibrium thermodynamics of fuel cells and provides analysis of efficiency in terms of processes inside the fuel cells, revealing some new terms affecting the efficiency.  相似文献   

12.
Contamination introduced by impurities from feed streams can impact polymer electrolyte membrane fuel cell performance dramatically. The presence of unwanted trace species, such as CO, H2S, and NH3, can adversely affect the function of a fuel cell. It has been reported that the major impact of CO and H2S contamination on fuel cell performance is kinetic, while the effect of NH3 contamination is speculated to be mainly membrane conductivity reduction. In this paper, the effect of NH3 contamination from the cathode side was investigated. The mechanisms of NH3 contamination were diagnosed based on degradation tests using electrochemical impedance spectroscopy and cyclic voltammetry. The contamination factors investigated included ammonia concentration, operating current, temperature, and relative humidity. The results show that the severity of the adverse effect caused by ammonia contamination was enhanced by increased ammonia concentration, decreased operating temperature, and decreased relative humidity. The performance decay induced by ammonia is attributable to reduced membrane/ionomer conductivity and ammonia adsorption on the catalyst surface, which blocks the active sites and hinders mass transfer.  相似文献   

13.
The fuel delivery system using both an ejector and a blower for a PEM fuel cell stack is introduced as a fuel efficiency configuration because of the possibility of hydrogen recirculation dependent upon load states.A high pressure difference between the cathode and anode could potentially damage the thin polymer electrolyte membrane. Therefore, the hydrogen pressure imposed to the stack should follow any change of the cathode pressure. In addition, stoichiometric ratio of the hydrogen should be maintained at a constant to prevent a fuel starvation at abrupt load changes.Furthermore, liquid water in the anode gas flow channels should be purged out in time to prevent flooding in the channels and other layers. The purging control also reduces the impurities concentration in cells to improve the cell performance.We developed a set of control oriented dynamic models that include a anode model considering the two-phase phenomenon and system components The model is used to design and optimize a state feedback controller along with an observer that controls the fuel pressure and stoichiometric ratio, whereby purging processes are also considered. Finally, included is static and dynamic analysis with respect to tracking and rejection performance of the proposed control.  相似文献   

14.
Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.  相似文献   

15.
Water transport in polymer electrolyte membrane fuel cells   总被引:2,自引:0,他引:2  
Polymer electrolyte membrane fuel cell (PEMFC) has been recognized as a promising zero-emission power source for portable, mobile and stationary applications. To simultaneously ensure high membrane proton conductivity and sufficient reactant delivery to reaction sites, water management has become one of the most important issues for PEMFC commercialization, and proper water management requires good understanding of water transport in different components of PEMFC. In this paper, previous researches related to water transport in PEMFC are comprehensively reviewed. The state and transport mechanism of water in different components are elaborated in detail. Based on the literature review, it is found that experimental techniques have been developed to predict distributions of water, gas species, temperature and other parameters in PEMFC. However, difficulties still remain for simultaneous measurements of multiple parameters, and the cell and system design modifications required by measurements need to be minimized. Previous modeling work on water transport in PEMFC involves developing rule-based and first-principle-based models, and first-principle-based models involve multi-scale methods from atomistic to full cell levels. Different models have been adopted for different purposes and they all together can provide a comprehensive view of water transport in PEMFC. With the development of computational power, application of lower length scale methods to higher length scales for more accurate and comprehensive results is feasible in the future. Researches related to cold start (startup from subzero temperatures) and high temperature PEMFC (HT-PEMFC) (operating at the temperatures higher than 100 °C) are also reviewed. Ice formation that hinders reactant delivery and damages cell materials is the major issue for PEMFC cold start, and enhancing water absorption by membrane electrolyte and external heating have been identified as the most effective ways to reduce ice formation and accelerate temperature increment. HT-PEMFC that can operate without liquid water formation and membrane hydration greatly simplifies water management strategy, and promising performance of HT-PEMFC has been demonstrated.  相似文献   

16.
Cold start is a challenging and important issue that hinders the commercialization of polymer electrolyte membrane fuel cell (PEMFC). In this study, a three-dimensional multiphase model has been developed to simulate the cold start processes in a PEMFC. Numerical simulations have been conducted for a single PEMFC starting at various operating and initial conditions, which are cell voltages, initial water contents and distributions, anode inlet relative humidity (RH), surrounding heat transfer coefficients, and cell temperatures. It is found that the heating-up time can be significantly reduced by decreasing the cell voltage and effective purge is critical for PEMFC cold start. The largest heating source at high cell voltages is the activational heat, and it becomes the ohmic heat at low cell voltages. The water freezing in the membrane is not observed when the cell is producing current due to the heat generation and the slow water diffusion into the membrane at subzero temperatures, and it is only observed after the cold start is failed, further confirming the importance of purge. Humidification of the supplied hydrogen has negligible effect on the cold start performance since only small amounts of water vapour can be taken by the gas streams at subzero temperatures. The surrounding heat transfer coefficients have significant influence on the heating-up time, indicating the importance of cell insulation or heating. The rate of cell heating up is reduced when the startup temperature is lowered due to the more sluggish electrochemical reaction kinetics.  相似文献   

17.
Cold start is critical to the commercialization of polymer electrolyte membrane fuel cell (PEMFC) for practical applications such as backup power and automotive applications. In this study, various numerically simulated PEMFC cold start processes are analyzed. The success of the cold start process depends on the competition between how fast the cell is heated up to the freezing point temperature and how fast ice is formed and built up in the pores of the cathode catalyst layer (CL) blocking oxygen transport to the reaction sites; the success of the cold start process thus depends on the product water (i) that is absorbed into the ionomer in the CL and membrane, (ii) that is taken away in vapour form by the gas flows (can be neglected), and (iii) that is frozen into ice in the CL pores. It is found that the membrane thickness and the ionomer volume fraction in the CL play pivotal roles in reducing the amount of ice formation. A thicker membrane leads to a larger water capacity but a slower water absorption process, and increasing the ionomer volume fraction in the CL enlarges the ionomer water capacity and enhances the membrane water absorption. Starting the cell under the potentiostatic condition is confirmed to be superior to the galvanostatic condition. Heating up the external surfaces and the inlet air enhances the temperature increment of the cell. However, the external heating methods have negligible improvement in reducing the amount of ice formation. Even though heating the inlet air is more effective in increasing the cell temperature than heating the outer surfaces, the heat capacity of the inlet air is low.  相似文献   

18.
Synchrotron X-ray tomography is used to visualize the water distribution in gas diffusion layers (GDL) and flow field channels of a polymer electrolyte membrane fuel cell (PEMFC) subsequent to operation. An experimental setup with a high spatial resolution of down to 10 μm is applied to investigate fundamental aspects of liquid water formations in the GDL substrate as well as the formation of water agglomerates in the flow field channels. Detailed analyses of water distribution regarding the GDL depth profile and the dependence of current density on the water amount in the GDL substrate are addressed. Visualizations of water droplets and wetting layer formations in the flow field channels are shown. The three-dimensional insight by means of this quasi in situ tomography allows for a better understanding of PEMFC water management at steady state operation conditions. The effect of membrane swelling as function of current density is pointed out. Results can serve as an essential input to create and verify flow field simulation outputs and single-phase models.  相似文献   

19.
In transportation applications, the main reasons of mechanical damage in polymer electrolyte membrane fuel cell (PEMFC) are road-induced vibrations and impact loads. The most vulnerable place of these cells is the interface between membrane and catalyst layer in the membrane electrode assembly (MEA). Hence, studies on mechanical strength of PEMFC should focus on that interface. The objective of present study lies in the fact that employing a prediction method to investigate the damage propagation behavior of vibration applied PEMFC using artificial neural network (ANN). The data available in the literature are used to constitute an ANN model. Three-layer model; input, hidden and output, are used for construction of ANN structure. Initial delamination length (a), amplitude (A), frequency (ω) and time (t) are used as input neurons whereas delamination length is output. Levenberg–Marquardt algorithm is selected as learning algorithm. On the other hand, number of hidden layer neuron is decided with the use of different neuron numbers by trial and error method. It is concluded that prediction capability of ANN model is in allowable limits and model can be suggested as efficient way of delamination length estimation.  相似文献   

20.
Polymer electrolyte membrane (PEM) fuel cells convert the chemical energy of hydrogen and oxygen directly into electrical energy. Waste heat and water are the reaction by‐products, making PEM fuel cells a promising zero‐emission power source for transportation and stationary co‐generation applications. In this study, a mathematical model of a PEM fuel cell stack is formulated. The distributions of the pressure and mass flow rate for the fuel and oxidant streams in the stack are determined with a hydraulic network analysis. Using these distributions as operating conditions, the performance of each cell in the stack is determined with a mathematical, single cell model that has been developed previously. The stack model has been applied to PEM fuel cell stacks with two common stack configurations: the U and Z stack design. The former is designed such that the reactant streams enter and exit the stack on the same end, while the latter has reactant streams entering and exiting on opposite ends. The stack analysed consists of 50 individual active cells with fully humidified H2 or reformate as fuel and humidified O2 or air as the oxidant. It is found that the average voltage of the cells in the stack is lower than the voltage of the cell operating individually, and this difference in the cell performance is significantly larger for reformate/air reactants when compared to the H2/O2 reactants. It is observed that the performance degradation for cells operating within a stack results from the unequal distribution of reactant mass flow among the cells in the stack. It is shown that strategies for performance improvement rely on obtaining a uniform reactant distribution within the stack, and include increasing stack manifold size, decreasing the number of gas flow channels per bipolar plate, and judicially varying the resistance to mass flow in the gas flow channels from cell to cell. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号