首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycerol is an inevitable by-product from biodiesel synthesis process and could be a promising feedstock for fermentative hydrogen production. In this study, the feasibility of using crude glycerol from biodiesel industry for biohydrogen production was evaluated using seven isolated hydrogen-producing bacterial strains (Clostridium butyricum, Clostridium pasteurianum, and Klebsiella sp.). Among the strains examined, C. pasteurianum CH4 exhibited the best biohydrogen-producing performance under the optimal conditions of: temperature, 35 °C; initial pH, 7.0; agitation rate, 200 rpm; glycerol concentration, 10 g/l. When using pure glycerol as carbon source for continuous hydrogen fermentation, the average H2 production rate and H2 yield were 103.1 ± 8.1 ml/h/l and 0.50 ± 0.02 mol H2/mol glycerol, respectively. In contrast, when using crude glycerol as the carbon source, the H2 production rate and H2 yield was improved to 166.0 ± 8.7 ml/h/l and 0.77 ± 0.05 mol H2/mol glycerol, respectively. This work demonstrated the high potential of using biodiesel by-product, glycerol, for cost-effective biohydrogen production.  相似文献   

2.
A thermophilic hydrogen producer was isolated from hot spring sediment and identified as Thermoanaerobacterium thermosaccharolyticum KKU19 by biochemical tests and 16S rRNA gene sequence analysis. The strain KKU19 showed the ability to utilize various kinds of carbon sources. Xylose was the preferred carbon source while peptone was the preferred organic nitrogen source. The optimum conditions for hydrogen production and cell growth on xylose were an initial pH of 6.50, temperature of 60 °C, a carbon to nitrogen ratio of 20:1, and a xylose concentration of 10.00 g/L. This resulted in a maximum cumulative hydrogen production, hydrogen production rate and hydrogen yield of 3020 ± 210 mL H2/L, 3.95 ± 0.20 mmol H2/L h and 2.09 ± 0.02 mol H2/mol xylose consumed, respectively. Acetic and butyric acids were the main soluble metabolite products suggesting acetate and butyrate type fermentation.  相似文献   

3.
Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 °C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0–2.3 mol H2/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans.  相似文献   

4.
5.
6.
In this study, biohydrogen production from glucose by two fermentative bacteria (Clostridium butyricum, a typical strictly anaerobic bacterium, and Klebsiella pneumoniae, a well-studied facultative anaerobic and nitrogen-fixing bacterium) are stiochiometrically analyzed according to energy (ATP), reducing equivalent and mass balances. The theoretical analysis reveals that the maximum yield of hydrogen on glucose by Clostridium butyricum is 3.26 mol/mol when all acetyl-CoA entering into the acetate pathway (α=1α=1), which is higher than that by Klebsiella pneumoniae under strictly anaerobic conditions. In the latter case, the maximum yield by Klebsiella pneumoniae is 2.86 mol hydrogen per mol glucose when five sevenths of acetyl-CoA is transformed to acetate. However, under microaerobic condition the maximum yield of hydrogen on glucose by Klebsiella pneumoniae could reach 6.68 mol/mol if all acetyl-CoA entered into tricarboxylic acid (TCA) cycle (γ=1γ=1) and a quantity of 53% of the reducing equivalents generated in the metabolism were completely oxidized by molecular oxygen. On the other hand, the relationship between hydrogen production and biomass formation is distinct by Clostridium butyricum from that by Klebsiella pneumoniae.   The former yield of hydrogen on glucose increases as biomass. In contrast, the latter one decreases as biomass in a certain range of molar fraction of acetate in total acetyl-CoA metabolism (5/7?β?05/7?β?0). Microaerobic condition is favorable for high hydrogen production with low biomass formation by Klebsiella pneumoniae   in a certain range of the molar fraction of all reducing equivalents oxidized completely by molecular oxygen (0.53?δ?0.830.53?δ?0.83).  相似文献   

7.
Dark fermentation is a promising biological method for hydrogen production because of its high production rate in the absence of light source and variety of the substrates. In this study, hydrogen production potential of four dark fermentative bacteria (Clostridium butyricum, Clostridium pasteurianum, Clostridium beijerinckii, and Enterobacter aerogenes) using glucose as substrate was investigated under anaerobic conditions. Batch experiments were conducted to study the effects of initial glucose concentration on hydrogen yield, hydrogen production rate and concentration of volatile fatty acids (VFA) in the effluents. Among the four different fermentative bacteria, C. butyricum showed great performance at 10 g/L of glucose with hydrogen production rate of 18.29 mL-H2/L-medium/hand specific hydrogen production rate of 3.90 mL-H2/g-biomass/h. In addition, it was found that the distribution of volatile fatty acids was different among the fermentative bacteria. C. butyricum and C. pasteurianum had higher ratio of acetate to butyrate compared to the other two species, which favored hydrogen generation.  相似文献   

8.
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached.  相似文献   

9.
This study explored the fermentative hydrogen production by immobilized microorganisms from glycerol, which is the byproduct of biodiesel production, and compared it with suspended fermentation. The effect of immobilization on hydrogen production process was examined. Results showed that both cumulative hydrogen production (CHP) and hydrogen yield (HY) were enhanced by microbial immobilization. The highest CHP and HY of 64 mL/100 mL and 0.52 mol H2/mol glycerol were obtained by immobilized microorganisms, compared to 9 mL/100 mL and 0.29 mol H2/mol glycerol in suspended microorganisms. Immobilization enhanced CHP and HY by 611.1% and 79.3%. In addition, immobilized microorganisms showed stronger tolerance to high substrate concentration and higher capability in glycerol utilization, which is of great significance for hydrogen production from glycerol. The enhanced hydrogen production may be due to the favorable micro-environment for different microorganisms in immobilized beads.  相似文献   

10.
A novel hydrogen-producing strain was isolated from gamma irradiated digested sludge and identified as Clostridium butyricum INET1. The fermentative hydrogen production performance of the newly isolated C. butyricum INET1 was characterized. Various carbon sources, including glucose, xylose, sucrose, lactose, starch and glycerol were used as substrate for hydrogen production. The operational conditions, including temperature, initial pH, substrate concentration and inoculation proportion were evaluated for their effects on hydrogen production, and the optimal condition was determined to be 35 °C, initial pH 7.0, 10 g/L glucose and 10% inoculation ratio. Cumulative hydrogen production of 218 mL/100 mL and hydrogen yield of 2.07 mol H2/mol hexose was obtained. The results showed that C. butyricum INET1 is capable of utilizing different substrates (glucose, xylose, sucrose, lactose, starch and glycerol) for efficient hydrogen production, which is a potential candidate for fermentative hydrogen production.  相似文献   

11.
Anaerobic hydrogen producing mesophilic and thermophilic cultures were enriched and studied from an intermediate temperature (45 °C) hot spring sample. H2 production yields at 37 °C and 55 °C were highest at the initial pH of 6.5 and 7.5, respectively. Optimum glucose, iron and nickel concentrations were 9 g/l, 25 mg/l and 25 mg/l both at 37 °C and 55 °C, respectively. The highest H2 yields at 37 °C and 55 °C were 1.8 and 1.0 mol H2/mol glucose, respectively, with the optimal pH, glucose concentration and iron addition. Hydrogen production from glucose at 55 °C and 37 °C was associated with ethanol- and acetate–butyrate type fermentations, respectively. Bacterial composition was analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE). Clostridium species dominated at both temperatures and the microbial diversity decreased with increasing temperature. At 55 °C, Clostridium ramosum was the dominant organism.  相似文献   

12.
In this study, grass silage was used both as a source of bacteria and as a substrate for dark fermentative hydrogen production. Silage is produced by lactic acid fermentation controlled by end point pH (<4.0). In this study, the fermentation of silage was successfully continued and directed to hydrogen production by neutralizing the pH. Highest hydrogen yield of 37.8 ± 5.8 mL H2/g silage was obtained at 25 g/L of silage. The main soluble metabolites were acetate and butyrate with the final concentrations of 1.5 ± 0.2 and 0.5 ± 0.0 g/L, respectively. Bacteria present (at 25 g silage/L) included Ruminobacillus xylanolyticum, Acetanaerobacterium elongatum and Clostridium populeti and were involved in silage fermentation to hydrogen. In summary, this work demonstrates that grass silage becomes amenable to hydrogen fermentation by indigenous silage bacteria through pH neutralization.  相似文献   

13.
Biohydrogen is usually produced via dark fermentation, which generates CO2 emissions and produces soluble metabolites (e.g., volatile fatty acids) with high chemical oxygen demand (COD) as the by-products, which require further treatments. In this study, mixotrophic culture of an isolated microalga (Chlorella vulgaris ESP6) was utilized to simultaneously consume CO2 and COD by-products from dark fermentation, converting them to valuable microalgae biomass. Light intensity and food to microorganism (F/M) ratio were adjusted to 150 μmol m−2 s−1 and F/M ratio, 4.5, respectively, to improve the efficiency of assimilating the soluble metabolites. The mixotrophic microalgae culture could reduce the CO2 content of dark fermentation effluent from 34% to 5% with nearly 100% consumption of soluble metabolites (mainly butyrate and acetate) in 9 days. The obtained microalgal biomass was hydrolyzed with 1.5% HCl and subsequently used as the substrate for bioH2 production with Clostridium butyricum CGS5, giving a cumulative H2 production of 1276 ml/L, a H2 production rate of 240 ml/L/h, and a H2 yield of 0.94 mol/mol sugar.  相似文献   

14.
In this study, production of hydrogen (H2) from glucose, xylose, galactose, mannose, arabinose and rhamnose by a strain isolated from activated sludge was investigated. The strain, named as Citrobacter sp. CMC-1, was enriched in cellobiose amended minimal media. Based on 16S rRNA sequence, the CMC-1 strain is a close relative of Citrobacter amalonaticus strain SA01 (99%). Optimal cultivation parameters for H2 production and growth such as pH and temperature were investigated. H2 yields from glucose at optimal conditions (pH 6.0 and 34 °C) were 1.82 ± 0.02 mol-H2/mol-glucose. Strain CMC-1 fermented galactose, mannose, xylose, arabinose and rhamnose. After 48 h incubation, the strain CMC-1 completely fermented all sugars tested, except arabinose. Increase in fermentation period lowered residual formate level in the media and improved H2 production for galactose, mannose and xylose (1.68 ± 0.24, 1.93 ± 0.14 and 1.63 ± 0.07 mol-H2/mol-substrate respectively).  相似文献   

15.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

16.
Wheat straw is an abundant agricultural residue which can be used as raw material to produce hydrogen (H2), a promising alternative energy carrier, at a low cost. Bioconversion of lignocellulosic biomass to produce H2 usually involves three main operations: pretreatment, hydrolysis and fermentation. In this study, the efficiency of exogenous enzyme addition on fermentative H2 production from wheat straw was evaluated using mixed-cultures in two experimental systems: a one-stage system (direct enzyme addition) and a two-stage system (enzymatic hydrolysis prior to dark fermentation). H2 production from untreated wheat straw ranged from 5.18 to 10.52 mL-H2 g-VS−1. Whatever the experimental enzyme addition procedure, a two-fold increase in H2 production yields ranging from 11.06 to 19.63 mL-H2 g-VS−1 was observed after enzymatic treatment of the wheat straw. The high variability in H2 yields in the two step process was explained by the consumption of free sugars by indigenous wheat straw microorganisms during enzymatic hydrolysis. The direct addition of exogenous enzymes in the one-stage dark fermentation stage proved to be the best way of significantly improving H2 production from lignocellulosic biomass. Finally, the optimal dose of enzyme mixture added to the wheat straw was evaluated between 1 and 5 mg-protein g-raw wheat straw−1.  相似文献   

17.
The partial pressure of hydrogen is an extremely important factor for hydrogen generation. This study investigated the effect of reduced pressure (via vacuum) on hydrogen production in a CSTR reactor. The results show that the reduced pressure condition is more effective in enhancing H2 production at lower HRT (e.g., 8–4 h) than at higher HRT (e.g., 12 h). The optimal hydrogen yield and overall hydrogen production efficiency occurred at a HRT of 6 h with a value of 4.50 mol H2/mol sucrose and 56.2%, respectively. Meanwhile, at HRT 6 h the hydrogen production rate was 0.937 mol/L/d. In addition, the HPR could be further improved to 1.196 mol/L/d when the HRT was shortened to 4 h, obtaining a 37–271% increase in HPR when compared with that described in the relevant reports. For all experiments, butyrate and acetate were the two primary soluble metabolites, accounting for 85–99% of total soluble microbial products. Predominant production of acetate and butyrate demonstrates the efficient H2 fermentation with reduced pressure processes.  相似文献   

18.
In India, annually about 3.3–5 million tons of cheese whey is produced which may causes serious problems for the environment if left untreated. In this study, pretreated cheese whey was utilized to produce hydrogen via dark fermentation by Enterobacter aerogenes 2822 cells in 2 L double walled cylindrical bioreactor having working volume of 1.5 L. Effect of change in total carbohydrate concentration in cheese whey (CWTC, 20–45 g L?1), temperature (T, 25–37 °C) and pH (5.5–7.5) was investigated on volumetric hydrogen production rate (VHPR) using Box Behnken design (BBD). Experimental VHPR of 24.7 mL L?1 h?1 was attained at an optimum concentration of 32.5 g L?1 CWTC, 31 °C T and 6.5 pH, which was in good correlation with predicted rate of 23.2 mL L?1 h?1. Mathematical models based on Monod and logistic equations were developed to describe the kinetics of substrate consumption and growth profile of E. aerogenes 2822 under optimum conditions. While for the modelling of fermentative hydrogen production in batch mode, Modified Gompertz equation and Leudeking-Piret models were used which gave proper simulated fitting. These results will add significant values to cheese whey by converting it into a clean form of bioenergy.  相似文献   

19.
Statistical experimental designs were applied for the optimization of medium constituents for hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Using Plackett–Burman design, xylose, FeSO4 and peptone were identified as significant variables which highly influenced hydrogen production. The path of steepest ascent was undertaken to approach the optimal region of the three significant factors. These variables were subsequently optimized using Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be xylose 16.15 g/L, FeSO4 250.17 mg/L, peptone 2.54 g/L. Hydrogen production at these optimum conditions was 1149.9 ± 65 ml H2/L medium. Under different carbon sources condition, the cumulative hydrogen volume were 1217 ml H2/L xylose medium, 1102 ml H2/L glucose medium and 977 ml H2/L sucrose medium; the maximum hydrogen yield were 2.0 ± 0.05 mol H2/mol xylose, 0.64 mol H2/mol glucose. Fermentative hydrogen production from xylose by Enterobacter sp. CN1 was superior to glucose and sucrose.  相似文献   

20.
The effect of butyrate on hydrogen production and the potential mechanism were investigated by adding butyric acid into dark fermentative hydrogen production system at different concentrations at pH range of 5.5–7.0. The results showed that under all the tested pH from 5.5 to 7.0, the addition of butyric acid can inhibit the hydrogen production, and the inhibitory degree (from 10.5% to 100%) increased with the increase of butyric acid concentration and with the decrease of pH values, which suggested that the inhibition effect is highly associated with the concentration of undissociated acids. Substrate utilization rate and VFAs accumulation also decreased with the addition of butyric acid. The microbial community analysis revealed that butyrate addition can decrease the dominant position of hydrogen-producing microorganisms, such as Clostridium, and increase the proportion of other non-hydrogen-producing bacteria, including Pseudomonas, Klebsiella, Acinetobacter, and Bacillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号