首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen and syngas production from sewage sludge via steam gasification   总被引:1,自引:0,他引:1  
High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 °C was found to be 0.076 ggas gsample−1. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes.  相似文献   

2.
In this paper, a hydrogen generator and a wind farm were taken as the research objects. The H2 generator consisted characteristics of laboratory-tested electrolyzers were determined as a function of the hydrogen mass flow. Determining the auxiliary power index of the device allowed the efficiency of the hydrogen generator to be determined as a function of hydrogen mass flow as well as the hydrogen generator relative power. The dynamic characteristics of a generator were also presented. The possibility of a given wind farm cooperating with hydrogen generators that are characterized by different powers and various efficiencies was simulated. Algorithm enables determination of hydrogen generators efficiency for devices with various performance in nominal operation point is shown. It has been shown that proper selection of the power of the hydrogen generator in relation to the power of the wind farm can ensure a high efficiency for the device.  相似文献   

3.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   

4.
Plasma gasification is a promising gasification technology intended at providing sustainable disposal for various wastes. In this work, a process model was developed to simulate the biomass plasma gasification using Aspen Plus simulator. Effects of critical parameters, including gasification temperature, Equivalence Ratio (ER) and Steam-to-Biomass Ratio (SBR) on the composition of fuel gas were discussed. The model is validated against experimental data and found to be in good agreement. The results indicate that low temperatures are more favourable for the production of hydrogen, while high ER has a negative effect on the hydrogen production. The simulation results also demonstrate that steam injection is a key factor to produce more hydrogen rich gas in the SBR range studied, but had a major effect on CO2 formation. The temperature and the SBR show opposite behavior on the syngas LHV, which is attributed to the CO content in the syngas that increases with temperature and decreases with SBR. Results of plasma gasification show similar syngas LHV trends for the three biomasses cases being the higher syngas LHV obtained for vines pruning. These data are crucial to describe scenarios concerning the potential use of biomass as energy source.  相似文献   

5.
The CO/H2/CO2/O2, CO/H2/CO2/air turbulent premixed flames as the model of syngas oxyfuel and syngas/air combustion were studied experimentally and compared to that of CH4/air mixtures at high pressures up to 1.0 MPa. Hydrogen ratio in syngas was set to be 35%, 50% and 65% in volumetric fraction. Four perforated plates are used to generate wide range of turbulence intensity and scales. The instantaneous flame structure was measured with OH-PLIF technique and then statistic flame structure parameters and turbulent burning velocity were derived to interpret the multi scale turbulence-flame interaction. Results show that the flame structure of syngas is wrinkled and convex cusps to the unburned mixtures are sharper and deeper comparing to that of CH4 flames. Pressure has a dominating effect on flame wrinkling other than mixtures composition at high pressure of 1.0 MPa. The flame surface density, Σ of syngas is larger than that of CH4. The Σ of syngas flames is almost independent on pressure and hydrogen ratio especially when hydrogen ratio is over 50% which is a significant feature of syngas combustion. Larger flame surface density for syngas flames mainly comes from the finer structure with smaller wrinkles which is the result of more intensive flame intrinsic instability. The ST/SL of syngas is larger than CH4 and it slightly increases with the pressure rise. The ST/SL of syngas oxyfuel is similar to that of syngas/air flames in the present study. The ST/SL increases with the increase of hydrogen ratio and keeps almost constant when hydrogen ratio is over 50%.  相似文献   

6.
Both biobutanol and urea are the environment-friendly hydrogen carrier. This study is to compare hydrogen production between steam reforming of biobutanol and autothermal reforming of biobutanol feed using pure steam and vaporization of aqueous urea (VAU) by a thermodynamic analysis. Hydrogen-rich syngas production, carbon formation, thermal neutral temperature (TNT), and hydrogen production cost are analyzed in both steam reforming and autothermal reforming. The results show that hydrogen-rich syngas production with the use of VAU is higher than that with pure steam not only in steam reforming but also in autothermal reforming. When the VAU/butanol molar ratio is 8, and the O2/butanol molar ratio equals 3, the reforming efficiency reaches up to 81.42%. At the same condition, the hydrogen production cost is lower than that without blending urea. Therefore, using VAU to replace pure steam in biobutanol reforming leads to benefits of increasing the hydrogen-rich syngas yield and lowering cost.  相似文献   

7.
This study discusses the influence of fluidization and gasification parameters on the hydrogen composition in syngas. For gasification conditions, when Stage 1 and Stage 2 gasifier temperature is 900 °C, the hydrogen content in syngas is 35.59 mol.% when the activated carbon is used as bed material. For using zeolite as bed material, the hydrogen content is 38.25 mol.%. The hydrogen content is higher than that under other conditions, but if the Steam/Biomass ratio is increased to 0.6, the hydrogen content resulted from zeolite as bed material is the highest 39.38 mol.%. For fluidization parameters, when Stage 2 bed material size is changed to 0.46 mm, no matter the bed material is activated carbon or zeolite, the hydrogen content in syngas is the best among three particle sizes. In terms of operating gas velocity, when gas velocity is 1.5 Umf, the hydrogen content is higher. For fluidization parameters, the two bed materials can increase hydrogen content in syngas effectively in Stage 2 fluidized bed, and their effects are similar to each other. However, considering the fluidization parameters, the hydrogen content in syngas when activated carbon is used as bed material is better than that when the zeolite is used.  相似文献   

8.
Evolutionary behavior of syngas characteristics evolved during the gasification of cardboard has been examined using a batch reactor with steam as a gasifying agent. Evolutionary behavior of syngas chemical composition, mole fractions of hydrogen, CO and CH4, as well as H2/CO ratio, LHV (kJ/m3), hydrogen flow rate, and percentage of combustible fuel in the syngas evolved has been examined at different steam to flow rates with fixed mass of waste cardboard. The effect of steam to carbon ratio as affect by the steam flow rate on overall syngas properties has therefore been examined. A new parameter called coefficient of energy gain (CEG) has been introduced that provides information on the energy gained from the process. This new parameter elaborates the importance of optimizing the sample residence time in the reactor.  相似文献   

9.
Syngas has been widely concerned and tested in various thermo-power devices as one promising alternative fuel. However, little is known about the turbulent combustion characteristics, especially on outwardly propagating turbulent syngas/air premixed flames. In this paper, the outwardly propagating turbulent syngas/air premixed flames were experimentally investigated in a constant-volume fan-stirred vessel. Tests were conducted on stoichiometric syngas with different hydrogen volumetric fractions (XH2, 10%–90%) in the ambience with different initial turbulence intensity (u'rms, 0.100 m/s~1.309 m/s). Turbulent burning velocity was taken as the major topic to be studied upon the multi-zone model in constant-volume propagating flame method. The influences of initial turbulent intensity and hydrogen volumetric fraction on the turbulent flame speed were analysed and discussed. An explicit correlation of turbulent flame speed was obtained from the experimental results.  相似文献   

10.
This paper presents the results research on the optimal fuel compositions and the control parameters of the spark ignition engine fueled with syngas-biogas-hydrogen for the purpose of setting up a flexible electronic control unit for the engine working in a solar-biomass hybrid renewable energy system. In syngas-biogas-hydrogen mixture, the optimal content of hydrogen and biogas is 20% and 30%, respectively. Exceeding these thresholds, the improvement of engine performance is moderate, but the pollution emission increases strongly. The optimal advanced ignition angle is 38°CA, 24°CA, and 18°CA for syngas, biogas, and hydrogen, respectively. With the same content of hydrogen or biogas in the mixture with syngas, the advanced ignition angle of the hydrogen-syngas blend is less than that of the syngas-biogas blend by about 4°CA at the engine speed of 3000 rpm. The derating power of the engine is 30% and 23% as switching from the hydrogen and biogas fueling mode to the syngas fueling mode, respectively. However, NOx emission of the engine increase from 200 ppm (for syngas) to 2800 ppm (for biogas) and to over 6000 ppm (for hydrogen). The optimal advanced ignition angle, the optimal equivalence ratio of the syngas-biogas-hydrogen fuel mixture vary within the limits of the respective values for syngas and hydrogen. To improve the engine efficiency and reduce pollutant emissions, the loading control system of the engine should prioritize the adjustment of the fuel flow and then the adjustment of the air-fuel mixture flow.  相似文献   

11.
The turbulent flame topology characteristics of the model syngas with two different hydrogen ratios were statistically investigated, namely CO/H2 ratio at 65/35 and 80/20, at equivalence ratio of 0.7. The combustion pressure was kept at 0.5 MPa and 1.0 MPa, to simulate the engine-like condition. The model syngas was diluted with CO2 with a mole fraction of 0.3 which mimics the flue gas recycle in the turbulent combustion. CH4/air flame with equivalence ratio of 1.0 was also tested for comparison. The flame was anchored on a premixed type Bunsen burner, which can generate a controllable turbulent flow. Flame front, which is represented by the sharp increased interface of the OH radical distribution, was measured with OH-PLIF technique. Flame front parameters were obtained through image processing to interpret the flame topology characteristics. Results showed that the turbulent flames possess a wrinkled character with smaller scale concave/convex structure superimposed on a larger scale convex structure under high pressure. The wrinkled structure of syngas flame is much finer and more corrugated than hydrocarbon fuel flames. The main reason is that scale of wrinkled structure is smaller for syngas flame, resulting from the unstable physics. Hydrogen in syngas can increase the intensity of the finer structure. Moreover, the model syngas flames have larger flame surface density than CH4/air flame, and hydrogen ratio in syngas can increase flame surface density. This would be mainly attributed to the fact that the syngas flames have smaller flame intrinsic instability scale li than CH4/air flame. ST/SL of the model syngas tested in this study is higher than CH4/air flames for both pressures, due to the high diffusivity and fast burning property of H2. This is mainly due to smaller LM and li. Vf of the two model syngas is much smaller than CH4/air flames, which suggests that syngas flame would lead to a larger possibility to occur combustion oscillation.  相似文献   

12.
High temperature steam gasification of wastewater sludge   总被引:2,自引:0,他引:2  
High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which can be used as a source of clean energy or co-fired with other fuels in current power systems. Wastewater sludge is a good source of sustainable fuel after fuel reforming with steam gasification. The use of steam is shown to provide value added characteristics to the sewage sludge with increased hydrogen content as well total energy. Results obtained on the syngas properties from sewage sludge are presented here at various steam to carbon ratios at a reactor temperature of 1173 K. Effect of steam to carbon ratio on syngas properties are evaluated with specific focus on the amounts of syngas yield, syngas composition, hydrogen yield, energy yield, and apparent thermal efficiency. The apparent thermal efficiency is similar to cold gas efficiency used in industry and was determined from the ratio of energy in syngas to energy in the solid sewage sludge feedstock. A laboratory scale semi-batch type gasifier was used to determine the evolutionary behavior of the syngas properties using calibrated experiments and diagnostic facilities. Results showed an optimum steam to carbon ratio of 5.62 for the range of conditions examined here for syngas yield, hydrogen yield, energy yield and energy ratio of syngas to sewage sludge fuel. The results show that steam gasification provided 25% increase in energy yield as compared to pyrolysis at the same temperature.  相似文献   

13.
Catalytic reforming is a technology to produce hydrogen and syngas from heavy hydrocarbon fuels in order to supply hydrogen to fuel cells. A lab-scale 2.5 kWt autothermal reforming (ATR) system with a specially designed reformer and combined analysis of balance-of-plant was studied and tested in the present study. NiO–Rh based bimetallic catalysts with promoters of Ce, K, and La were used in the reformer. The performance of the reformer was studied by checking the hydrogen selectivity, COx selectivity, and energy conversion efficiency at various operating temperatures, steam to carbon ratios, oxygen to carbon ratios, and reactants' inlet temperatures. The experimental work firstly tested n-dodecane as the surrogate of Jet-A fuel to optimize operating conditions. After that, desulfurized commercial Jet-A fuel was tested at the optimized operating conditions. The design of the reformer and the catalyst are recommended for high performance Jet-A fuel reforming and hydrogen-rich syngas production.  相似文献   

14.
This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 °C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.  相似文献   

15.
A fully-integrated micro PEM fuel cell system with a NaBH4 hydrogen generator was developed. The micro fuel cell system contained a micro PEM fuel cell and a NaBH4 hydrogen generator. The hydrogen generator comprised a NaBH4 reacting chamber and a hydrogen separating chamber. Photosensitive glass wafers were used to fabricate a lightweight and corrosion-resistant micro fuel cell and hydrogen generator. All of the BOP such as a NaBH4 cartridge, a micropump, and an auxiliary battery were fully integrated. In order to generate stable power output, a hybrid power management operating with a micro fuel cell and battery was designed. The integrated performance of the micro PEM fuel cell with NaBH4 hydrogen generator was evaluated under various operating conditions. The hybrid power output was stably provided by the micro PEM fuel cell and auxiliary battery. The maximum power output and specific energy density of the micro PEM fuel cell system were 250 mW and 111.2 W h/kg, respectively.  相似文献   

16.
Extensive computations were made to determine the flammability limits of opposed-jet H2/CO syngas diffusion flames from high stretched blowoff to low stretched quenching. Results from the U-shape extinction boundaries indicate the minimum hydrogen concentrations for H2/CO syngas to be combustible are larger towards both ends of high strain and low strain rates. The most flammable strain rate is near one s−1 where syngas diffusion flames exist with minimum 0.002% hydrogen content. The critical oxygen percentage (or limiting oxygen index) below which no diffusion flames could exist for any strain rate was found to be 4.7% for the equal-molar syngas fuels (H2/CO = 1), and the critical oxygen percentage is lower for syngas mixture with higher hydrogen content. The flammability maps were also constructed with strain rates and pressures or dilution gases percentages as the coordinates. By adding dilution gases such as CO2, H2O, and N2 to make the syngas non-flammable, besides the inert effect from the diluents, the chemical effect of H2O contributes to higher flame temperature, while the radiation effect of H2O and CO2 plays an important role in the flame extinction at low strain rates.  相似文献   

17.
This paper analyzes innovative processes for producing hydrogen from fossil fuels conversion (natural gas, coal, lignite) based on chemical looping techniques, allowing intrinsic CO2 capture. This paper evaluates in details the iron-based chemical looping system used for hydrogen production in conjunction with natural gas and syngas produced from coal and lignite gasification. The paper assesses the potential applications of natural gas and syngas chemical looping combustion systems to generate hydrogen. Investigated plant concepts with natural gas and syngas-based chemical looping method produce 500 MW hydrogen (based on lower heating value) covering ancillary power consumption with an almost total decarbonisation rate of the fossil fuels used.The paper presents in details the plant concepts and the methodology used to evaluate the performances using critical design factors like: gasifier feeding system (various fuel transport gases), heat and power integration analysis, potential ways to increase the overall energy efficiency (e.g. steam integration of chemical looping unit into the combined cycle), hydrogen and carbon dioxide quality specifications considering the use of hydrogen in transport (fuel cells) and carbon dioxide storage in geological formation or used for EOR.  相似文献   

18.
The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds.  相似文献   

19.
Raw Gas generated from LCPG (lump coal pressurized gasifier) contains quantities of organics including methane so that it is not suitable as syngas. A process was proposed to solve this problem, and Aspen Plus was used to discuss its possibility that Raw Gas was reformed to clean syngas through introducing oxygen on the principle of thermodynamic equilibrium. The simulation results reveal that almost all organics are completely converted to simple substances such as hydrogen and carbon monoxide whether or not to preheat. Raw Syngas and wastewater no longer contain various organic pollutants eliminated difficultly besides very small amounts of ammonia and hydrogen sulfide, which certainly simplifies the purification and post-treatment processes. A Raw Syngas with H2/CO ratio of 2.0 was attained under the operating condition of 2.35 Mpa and 918 °C. Such H2/CO ratio is higher than those of coal gas derived from existing gasification technologies. Meanwhile, the total yield and content of the effective gas (CO + H2) have been increased to 1109 m3/t and 72.0% respectively in the preheating process, and GE (gasification efficiency) rises to 84.8%. The OC (oxygen consumption), CC (coal consumption) and SC (steam consumption) have been reduced by 47.3%, 50.7% and 49.4% respectively compared with LCPG. In addition, the feasibility of this process was further verified with kinetic simulation.  相似文献   

20.
Hydrogen is regarded as a potential future energy carrier. It can be produced by the electrolysis of water with the required power supplied by a photovoltaic module. The hydrogen in this study was produced using a hydrogen generator with a solid polymer electrolyte. The required power was supplied by a photovoltaic module rated at 3.4 V, 27.45 A. The experimental system was designed and constructed so that the photovoltaic module was directly coupled to the hydrogen generator. The system characteristics: quantity of hydrogen produced, current/voltage output characteristics of the PV module, PV module and H2 generator temperatures were measured and analyzed. A method to design a solar hydrogen energy system, providing the most cost effective hydrogen generation, was developed. In this method, the design point is chosen based on the irradiance during system operation under rated capacity. The data supplied by the experimental system clearly showed the importance of considering the ratio of photovoltaic module cost to hydrogen generator cost when designing an optimum solar hydrogen system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号