首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nafion ion clusters are used as nanoscale polymerization reactors to synthesize sulfonated resorcinol-formaldehyde (RF) polymer gels to be used as fillers of a hybrid membrane. Because these ion clusters are distributed well over the entire Nafion structure, the polymer gels are also well dispersed in this unique organic–organic hybrid membrane compared with inorganic–organic hybrid membranes prepared by common recasting process that usually show serious aggregation of the fillers. The obtained organic–organic hybrid membranes show increased water uptake capability and the higher proton conductivity relative to pristine Nafion membrane under low-humidity conditions. In single-cell proton exchange membrane fuel cell operation without external humidifying system, the maximum power density of 289 mW/cm2 is observed for the membrane electrode assembly (MEA) fabricated with 2 wt% sulfonated RF polymer gels/Nafion hybrid membrane, which is ca. 63% higher than that of the MEA fabricated with pristine Nafion membrane. However, pristine Nafion membrane showed similar or better performance to that of hybrid membranes when reactant gases are fully humidified.  相似文献   

2.
The goal of the present work is to introduce a new aromatic bulky six-membered sulfo-napthalimide pendant groups, specifically 2-(2,5-dicarb-oxyphenyl-1,3-dioxo- 2,3-didihydro-1Hbenzo[de]isoquinoline-6-sulfonate (PDDDBIS), into the poly(oxybenzimidazole) (POBI) main chain. As no sulfo-napthalimide-bearing POBI has been reported yet, this could be a potential strategy to improve the solubility, processability, and proton conductivity of sulfonated POBIs in addition to boosting fuel cell performance. Out of six membranes synthesized, one sulfonated POBI membrane with pendant PDDDBIS groups (SPOBI-100) exhibited a fairly high proton conductivity of 0.172 S/cm, which is higher than Nafion-117 (0.161 S/cm) at 90 °C. Notably, an H2/O2 PEM fuel cell fabricated with the SPOBI-100 membrane displayed good performance with the maximum peak power density of 547 mW/cm2 and output current density of 1259 mA/cm2 in 0.99 V at 90 °C with100% RH, which is higher than the Nafion 117 power density (519 mW/cm2) and current density (1215 mA/cm2) under the same testing conditions.  相似文献   

3.
A composite membrane composed of a sulfonated diblock copolymer (SDBC) based on poly(ether ether ketone) blocks copolymerized with partially fluorinated poly(arylene ether sulfone) and sulfonated carbon nanotubes (SCNTs) was fabricated by simple solution casting. Addition of the SCNT filler enhanced the water absorption and proton conductivity of membranes because of the increased per‐cluster volume of sulfonic acid groups, at the same time reinforced the membranes' thermal and mechanical properties. The SDBC/SCNT‐1.5 membrane exhibited the most improved physicochemical properties among all materials. It obtained a proton conductivity of 10.1 mS/cm at 120°C under 20% relative humidity (RH) which was 2.6 times more improved than the pristine membrane (3.9 mS/cm). Moreover, the single cell performance of the SDBC/SCNT‐1.5 membrane at 60°C and 60% RH at ambient pressure exhibited a peak power density of 171 mW/cm2 at a load current density of 378 mA/cm2, while the pristine membrane exhibited 119 mW/cm2 at a load current density of 294 mA/cm2. Overall, the composite membrane exhibited very promising characteristics to be used as polymer electrolyte membrane in fuel cells operated at intermediate RH.  相似文献   

4.
To increase the conductivity of proton exchange membranes in the membrane thickness direction, a novel mixed matrix membrane of Nafion ionomer and sulfonated graphene nanoplates (sGNP) with aligned proton channels is prepared with the assistance of an electric field. A high voltage alternative electric field is applied to a casting solution consisting of Nafion ionomer, sGNP, N, N-dimethylformamide (DMF), and p-xylene (PX) while evaporating the solvents. The sGNP, naturally attracting the ionic groups of Nafion ionomer to their vicinity, is polarized and rotated under the electric field, leaving aligned proton channels in the solidified membrane. The trans-plane proton conductivity of the mixed matrix membrane can reach 0.155 S cm?1 at 80 °C and 100% RH, an increase of 48% as compared with the conventional cast Nafion membrane. Accordingly, the peak power output of H2/O2 fuel cell with the mixed matrix membrane increases by 15%, reaching 440 mW cm?2 at 80 °C.  相似文献   

5.
A novel sulfonated multi-wall carbon nanotubes (s-MWCNTs) filler is synthesized by ring-opening reaction. And then, a series of branched sulfonated polyimide (bSPI)/s-MWCNTs composite membranes are also prepared for application in vanadium redox flow batteries (VRFBs). The optimized bSPI/s-MWCNTs-2% composite membrane has lower vanadium ion permeability (2.01 × 10−7 cm2 min−1) and higher proton selectivity (1.06 × 105 S min cm−3) compared to those of commercial Nafion 212 membrane. Moreover, the VRFB with bSPI/s-MWCNTs-2% composite membrane exhibits higher coulombic efficiencies (CEs: 96.0–98.2%) and energy efficiencies (EEs: 79.7–69.5%) than that with Nafion 212 membrane (CEs: 86.5–92.5% and EEs: 78.5–67.6%) at 80–160 mA cm−2. The VRFB with bSPI/s-MWCNTs-2% composite membrane has stable battery performance over 400 cycles at 100 mA cm−2, whose EE value is in the top level among previously reported SPI-based composite membranes. The results show that the bSPI/s-MWCNTs-2% composite membrane has a great prospect in VRFB application.  相似文献   

6.
Nanocomposite membranes based on sulfonated poly (ether ether ketone) (SPEEK) and sulfonated core-shell TiO2 nanoparticles were prepared. TiO2 nanoparticles were sulfonated by redox polymerization method by using sodium styrene sulfonate (SSA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) monomers. The resultant hybrid nanoparticles (PAMPS-gTiO2 and PSSA-g-TiO2) were introduced to SPEEK with a sulfonation degree of 68%. Grafting of sulfonated polymers onto TiO2 nanoparticles enhanced the content of proton transport sites in the membrane, leading to an increase in proton conductivity and power density. Besides, the mechanical and dimensional stabilities of the nanocomposite membranes were also improved compared with pure SPEEK membrane. The maximum power density for membranes containing 7.5 wt% of PAMPS-gTiO2 and PSSA-g-TiO2 nanoparticles at 80 °C obtained 283 mW cm−2 and 245 mW cm−2, respectively.  相似文献   

7.
In this work, phosphotungstic acid (HPW) modified amino-functionalized mesoporous silica (AMS) as an inorganic filler (AMS@HPW) is incorporated into sulfonated poly (aryl ether sulfone) (SPAES) to prepare inorganic-organic composite membrane. The fabricated silica possesses a mesoporous structure with a surface area of 488.74 m2/g. The amino modification of silica acting as a “bridge” loads more HPW and promotes the compatibility between inorganic fillers and SPAES. The obtained SPAES/AMS@HPW composite membranes effectively inhibit HPW leakage and display better stability and fuel cell property due to the acid-base interaction and hydrogen-bond networks. Especially, the SPAES/AMS@HPW-1.0 membrane displays 18.4% higher proton conductivity (175.5 mS/cm) at 90 °C and 22.3–28.5% higher power density (470.4–678.4 mW/cm2) at 60%–100% RH than the original membrane. In addition, the SPAES/AMS@HPW-1.0 membrane still maintains stable voltage output and shows lower voltage decay (0.331 mV/h) and hydrogen permeation current density (8.28 mA/cm2) than Nafion 112 after the durability test.  相似文献   

8.
Nafion based proton exchange membrane (PEM) has long been used as conventional PEM in direct methanol fuel cell (DMFC) industry. However, the high cost of Nafion membrane and other drawbacks like high methanol crossover hinder the advancement of this industry. This study aims to develop a low cost membrane using sulfonated poly ether ether ketone (SPEEK) polymer. Silica and silicotungstic acid (SiWA) were incorporated into the membrane matrix using solution casting method. The optimum loading of the additives was tuned and it is discovered that the SPEEK membrane containing 10 wt% of silica and 5 wt% of SiWA has the best performance due to its high proton conductivity and moderately low methanol permeability. The performance of the membrane can further be enhanced by adding (3-aminopropyl)triethoxysilane (APTES) and carbonyldiimidazole (CDI) as coupling agents. Inclusion of APTES and CDI in SPEEK could not only improve the compatibility between organic SPEEK and inorganic additives, but also improve the homogeneity and dispersity of the additives. As a result, the resultant membrane with a better dimensional stability achieves high selectivity (10.60 × 104 S.s/cm3) up to 6.5 times more than pristine SPEEK membrane and 1.3 times higher than the commercial Nafion 117 membrane.  相似文献   

9.
A commercial perfluorinated sulfonic acid (PFSA) membrane, Nafion, shows outstanding conductivity under conditions of a fully humidified surrounding. Nevertheless, the use of Nafion membranes that operate only at low temperature (<100 °C) can lead to some disadvantages in PEMFC systems, such as a low impurity tolerance and slow kinetics. To overcome the above problems, this study introduces a highly durable composite membrane with an inorganic filler for a high-temperature proton exchange membrane fuel cell (HT-PEMFC) applications under anhydrous conditions. In this work, polybenzimidazole (PBI) is used as a polymer electrolyte membrane with the addition of a sulfonated graphene oxide (SGO) inorganic filler. The amount of SGO filler was varied (0.5–6 wt.%) to study its influence on proton conductivity at elevated temperature, mechanical stability as well as phosphoric acid doping level. In particular, PBI-SGO composite membranes exhibited higher the level of acid dopant and proton conductivities than those of the pure PBI membranes. The PBI-SGO 2 wt.% composite membrane displayed the highest proton conductivity, with a value of 9.142 mS cm−1 at 25 °C, and it increased to 29.30 mS cm−1 at 150 °C. The PBI-SGO 2 wt.% also displayed the maximum values in the acid doping level (11.63 mol of PA/PBI repeat unit) and mechanical stability (48.86 MPa) analyses. In the HT-PEMFC test, compared with a pristine PBI membrane, the maximum power density was increased by 40% with the use of a PBI composite membrane with 2 wt.% SGO. These results show that the PBI-SGO membrane has a great potential to be applied as an alternative membrane in HT-PEMFC applications, offering the possibility of improving impurity tolerance and kinetic reactions.  相似文献   

10.
The influence of optimal ultraviolet irradiation of Nafion membranes in enhancing proton conductivity and performance of passive micro-direct methanol fuel cells with silicon micro-flow channels is investigated for the first time. Initially, Nafion membranes are irradiated with different doses of ultraviolet radiation ranging within 0–400 mJ cm−2 and their water uptake, swelling-ratios, porosity, and proton conductivities are measured using standard procedure. Results show that there is an enhancement in proton conductivity with an optimal dose of 198 mJ cm−2 ultraviolet radiation. This enhancement is due to optimum photo-crosslinking of –SO3H species resulting in maximum pore-size which facilitates enhanced proton-hopping from one –SO3H site to another in the hydrophilic channel. Nafion membranes with three different thicknesses (50 μm, 90 μm and 183 μm) are irradiated with ultraviolet radiation with 198 mJ cm−2 dose and passive micro-direct methanol fuel cells are assembled with irradiated Nafion proton exchange membranes. The polarization plots are obtained for the assembled devices. Results show an enhancement of power density of devices nearly by a factor of 1.2–1.5 with optimally irradiated membranes indicating that optimum dose of ultraviolet irradiation of Nafion membranes is an effective technique for power enhancement of proton exchange membrane fuel cells which use fuels like methanol, ethanol and hydrogen.  相似文献   

11.
The objective of this work is to examine the polybenzimidazole (PBI)/sulfonated graphene oxide (sGO) membranes as alternative materials for high-temperature proton exchange membrane fuel cell (HT-PEMFC). PBI/sGO composite membranes were characterized by TGA, FTIR, SEM analysis, acid doping&acid leaching tests, mechanical analysis, and proton conductivity measurements. The proton conductivity of composite membranes was considerably enhanced by the existence of sGO filler. The enhancement of these properties is related to the increased content of –SO3H groups in the PBI/sGO composite membrane, increasing the channel availability required for the proton transport. The PBI/sGO membranes were tested in a single HT-PEMFC to evaluate high-temperature fuel cell performance. Amongst the PBI/sGO composite membranes, the membrane containing 5 wt. % GO (PBI/sGO-2) showed the highest HT-PEMFC performance. The maximum power density of 364 mW/cm2 was yielded by PBI/sGO-2 membrane when operating the cell at 160 °C under non humidified conditions. In comparison, a maximum power density of 235 mW/cm2 was determined by the PBI membrane under the same operating conditions. To investigate the HT-PEMFC stability, long-term stability tests were performed in comparison with the PBI membrane. After a long-term performance test for 200 h, the HT-PEMFC performance loss was obtained as 9% and 13% for PBI/sGO-2 and PBI membranes, respectively. The improved HT-PEMFC performance of PBI/sGO composite membranes suggests that PBI/sGO composites are feasible candidates for HT-PEMFC applications.  相似文献   

12.
《Journal of power sources》2006,159(2):1015-1024
Various thiol and sultone groups were grafted onto the surface of titanate nanosheets to render organic sulfonic acid (HSO3–) functionality. The nanocomposite membranes were cast together with Nafion® using these materials as inorganic fillers. Nanocomposite membranes containing surface-sulfonated titanates showed higher proton conductivity than composite membranes containing untreated TiO2 P25 particles. They showed better mechanical and thermal stability than Nafion alone. The methanol permeability of nanocomposite membranes decreased with increasing the content of the sulfonated titanate in the nanocomposite membranes. The relative permeability of methanol through these composite membranes with 2 and 5 M methanol solutions was reduced by up to 38 and 26%, respectively, relative to pristine Nafion 115 membranes. The membrane electrode assembly using Nafion/sulfonated titanate nanocomposite membranes exhibited up to 57% higher power density than the assembly containing a pristine Nafion membrane under typical operating conditions of direct methanol fuel cells.  相似文献   

13.
Novel blend nanocomposite proton‐exchange membranes were prepared using sulfonated poly (ether ether ketone) (SPEEK), perfluorosulfonic acid (PFSA), and Ba0.9Sr0.1TiO3 (BST) doped‐perovskite nanoparticles. The membranes were evaluated by attenuated total reflection, X‐ray diffraction spectroscopy, water uptake, proton conductivity, methanol permeability, and direct methanol fuel cell test. The effect of two additives, PFSA and BST, were investigated. Results indicated that both proton conductivity and methanol barrier of the blend nanocomposite membranes improved compared with pristine SPEEK and the as‐prepared blend membranes. The methanol permeability and the proton conductivity of the blend membrane containing 6 wt% BST obtained 3.56 × 10?7 cm2 s?1 (at 25 °C) and 0.110 S cm?1 (at 80 °C), respectively. The power density value for the optimum blend nanocomposite membrane (15 wt% PFSA and 6 wt% BST) (54.89 mW cm‐2) was higher than that of pristine SPEEK (31.34 mW cm‐2) and SPF15 blend membrane (36.12 mW cm‐2).  相似文献   

14.
In polymer electrolyte fuel cell operation, a decrease in the proton conductivity of the membrane at reduced humidity is a main cause for poor cell performance at high temperature. To alleviate the dehydration of the membrane at high temperature, sulfonated mesoporous benzene-silica (sMBS) particles are embedded in sulfonated poly(ether ether ketone) (sPEEK) membranes. As the sMBS itself is highly sulfonated on both organic and inorganic moieties, the proton conductivity of composite membranes is much higher than that of the pristine sPEEK membrane, and it reaches that of Nafion 117 at a high relative humidity (RH) of 90%. The dehydration rate of the membrane is reduced significantly by the capillary condensation effect of sMBS particles with the nanometer-scale 2-D hexagonal cylindrical pores, and the proton conductivity of the composite membranes, 0.234 × 10−1 S cm−1, is much higher than that of pristine sPEEK membrane, 0.59 × 10−3 S cm−1, at a relatively low humidity of 40% RH. This maintenance of high conductivity at low humidity is attributed to the high water-holding capacity of the sMBS proton conductors. The sMBS-embedded sPEEK composite membranes show a much lower methanol permeability of 2–5 × 10−7 cm2 s−1 compared to that of Nafion 117, which is 1.6 × 10−6 cm2 s−1 at room temperature.  相似文献   

15.
In this paper, the blend membranes based on sulfonated poly(ether ether ketone) and sulfonated cyclodextrin as the proton conducting membranes for DMFCs usage are prepared and investigated. The incorporation of sulfonated cyclodextrin in SPEEK membranes is evaluated by the characteristic absorptions of FT-IR spectra. Thermal stability and micro-morphology of the blend membranes are determined by thermogravimetry analysis and scanning electron microscope tests. The properties of the blend membranes are investigated such as swelling behavior, methanol permeability and proton conduction as function of the fraction of sulfonated cyclodextrin. The methanol crossover could be suppressed by the incorporation of sulfonated cyclodextrin and the methanol permeability decreases when the methanol concentration increases from 2.5 M to 20 M. Proton conduction is also promoted by the introduction of sulfonated cyclodextrin and the proton conductivity increases with the increase of sulfonated cyclodextrin content. The calculated activation energy for proton conduction of the blend membranes is very low and the maximum value is 4.20 kJ mol−1, which is much lower than that of Nafion 115 (9.15 kJ mol−1, measured in our experiments). These data indicate that proton can transport easily through the blend membranes. The selectivity of the blend membranes, a compromise between proton conductivity and methanol permeability, is much higher than that of Nafion 115 at the sulfonated cyclodextrin content above 15 wt.%. The blend membranes with 15, 20, and 25 wt.% of sulfonated cyclodextrin are assembled in the practical DMFCs and their polarization curves with 2.5 M and 8.0 M methanol solution are determined, respectively. The membrane with 20 wt.% sulfonated cyclodextrin reaches the highest power density of 29.52 mW cm−2 at 120 mA cm−2 and 8.0 M methanol solution. These results suggest the potential usage of the SPEEK membranes incorporating with sulfonated cyclodextrin in DMFCs.  相似文献   

16.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   

17.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   

18.
We investigated the effects of the compositions of catalyst layers and diffusion layers on performances of the membrane electrode assemblies (MEAs) for direct dimethyl ether fuel cell. The performances of the MEAs with different thicknesses of Nafion membranes were compared in this work. The optimal compositions in the anode are: 20 wt% Nafion content and 3.6 mg cm−2 Pt loading in the catalyst layer, and 30 wt% PTFE content and 1 mg cm−2 carbon black loading in the diffusion layer. In the cathode, MEA with 20 wt% Nafion content in the catalyst layer and 30 wt% PTFE content in the diffusion layer presented the optimal performance. The MEA with Nafion 115 membrane displayed the highest maximum power density of 46 mW cm−2 among the three MEAs with different Nafion membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Constructing consecutive proton-conducting nanochannels and optimizing nanophase-separation within proton exchange membrane (PEM) was of guiding significance for improving proton transfer. Metal organic framework (MOF), as a novel and functional material had drawn increasing attention in the research of proton PEM because of its flexible tunability and designability. Herein, a novel MOF-based nanofibrous mats (NFMs) were prepared by the self-assembly of zeolitic imidazole framework-67 (ZIF-67) onto polyacrylonitrile (PAN) NFMs. Subsequently, the ZIF-67 NFMs were incorporated into Nafion matrix to prepare ZIF-67@Nafion composite membrane which aimed at constructing consecutive proton-conducting channels. Especially, the acid–base pairs between N–H (ZIF-67 NFMs) and –SO3H (Nafion) could promote the protonation/deprotonation and subsequent proton leaping via Grotthuss mechanisms. As expected, the ZIF-67@Nafion-5 composite membrane showed a promising proton conductivity of 288 mS/cm at 80 °C and 100% RH, low methanol permeability of 7.98 × 10−7 cm2s−1, and superior power density of 298.68 mW/cm2 at 80 °C and 100% RH. In addition, the resulting composite membrane exhibited considerable enhancement in thermal stability and dimensional stability. This promising strategy provided a valuable reference for designing high-performance PEMs.  相似文献   

20.
Membrane electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, water uptake, and proton conductivity. The composite membranes gained good thermal resistance with insertion of inorganic oxides. Uniform and homogeneous distribution of inorganic oxides enhanced crystalline character of these membranes. Gas diffusion electrodes (GDE) were fabricated by Ultrasonic Coating Technique. Catalyst loading was 0.4 mg Pt/cm2 for both anode and cathode sides. Fuel cell performances of Nafion/TiSiO4 composite membrane were better than that of other membranes. The power density obtained at 0.5 V at 75 °C was 0.456 W cm−2, 0.547 W cm−2, 0.477 W cm−2 and 0.803 W cm−2 for Nafion, Nafion/TiO2, Nafion/SiO2, and Nafion/TiSiO4 composite membranes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号