首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive auto-catalytic recombiners (PARs) have the potential to be used in the future for the removal of accidentally released hydrogen inside confined areas. PARs could be operated both as stand-alone or backup safety devices, e.g. in case of active ventilation failure.Recently, computational fluid dynamics (CFD) simulations have been performed in order to demonstrate the principal performance of a PAR during a postulated hydrogen release inside a car garage. This fundamental study has now been extended towards a variation of several boundary conditions including PAR location, hydrogen release scenario, and active venting operation. The goal of this enhanced study is to investigate the sensitivity of the PAR operational behavior for changing boundary conditions, and to support the identification of a suitable PAR positioning strategy. For the simulation of PAR operation, the in-house code REKO-DIREKT has been implemented in the CFD code ANSYS-CFX 15.In a first step, the vertical position of the PAR and the thermal boundary conditions of the garage walls have been modified. In a subsequent step, different hydrogen release modes have been simulated, which result either in a hydrogen-rich layer underneath the ceiling or in a homogeneous hydrogen distribution inside the garage. Furthermore, the interaction of active venting and PAR operation has been investigated.As a result of this parameter study, the optimum PAR location was identified to be close underneath the garage ceiling. In case of active venting failure, the PAR efficiently reduces the flammable gas volume (hydrogen concentration > 4 vol.%) for both stratified and homogeneous distribution. However, the simulations indicate that the simultaneous operation of active venting and PAR may in some cases reduce the overall efficiency of hydrogen removal. Consequently, a well-matched arrangement of both safety systems is required in order to optimize the overall efficiency. The presented CFD-based approach is an appropriate tool to support the assessment of the efficiency of PAR application for plant design and safety considerations with regard to the use of hydrogen in confined areas.  相似文献   

2.
Storing a hydrogen fuel-cell vehicle in a garage poses a potential safety hazard because of the accidents that could arise from a hydrogen leak. A series of tests examined the risk involved with hydrogen releases and deflagrations in a structure built to simulate a one-car garage. The experiments involved igniting hydrogen gas that was released inside the structure and studying the effects of the deflagrations. The “garage” measured 2.72 m high, 3.64 m wide, and 6.10 m long internally and was constructed from steel using a reinforced design capable of withstanding a detonation. The front face of the garage was covered with a thin, transparent plastic film. Experiments were performed to investigate extended-duration (20-40 min) hydrogen leaks. The effect that the presence of a vehicle in the garage has on the deflagration was also studied. The experiments examined the effectiveness of different ventilation techniques at reducing the hydrogen concentration in the enclosure. Ventilation techniques included natural upper and lower openings and mechanical ventilation systems. A system of evacuated sampling bottles was used to measure hydrogen concentration throughout the garage prior to ignition, and at various times during the release. All experiments were documented with standard and infrared (IR) video. Flame front propagation was monitored with thermocouples. Pressures within the garage were measured by four pressure transducers mounted on the inside walls of the garage. Six free-field pressure transducers were used to measure the pressures outside the garage.  相似文献   

3.
An experimental investigation into the ignition characteristics of lean pre-mixed hydrogen/air mixtures is conducted using a stagnation-point flow configuration against a platinum surface, with a special emphasis on the determination of potential fire safety hazards associated with hydrogen release in the presence of a catalyst. Two distinct regimes are observed for this system – catalytic surface reactions and gas-phase ignition. It is demonstrated that depending on mixture equivalence ratio, catalytic surface reactions can be initiated with or without surface heating. When significant surface heat is released via catalytic reactions, gas-phase ignition can be induced, greatly increasing the apparent danger of hydrogen leaks in the presence of a platinum surface. The critical surface temperatures leading to catalytic ignition for hydrogen/air mixtures over a platinum surface are further investigated over a range of equivalence ratios and stretch rates. It is shown that ultra-lean hydrogen/air mixtures can be catalytically ignited even in the absence of external heat addition, suggesting that hydrogen leakage in the presence of a platinum surface may pose a fire safety risk even at room temperature. Furthermore, even without a transition to gas-phase ignition, the surface temperature that can be sustained with surface reactions alone may contribute to component degradation or itself pose a safety hazard.  相似文献   

4.
The dispersion of permeated hydrogen from a storage tank in a typical garage with adiabatic walls and still air is studied analytically and numerically. Numerical simulations are performed based on an original approach of a hydrogen mass source term introduction in the hydrogen conservation equation in control volumes around the tank surface. The maximum hydrogen concentration in an enclosure is always on the top surface of the tank and never reaches 100% by volume. Both the analytical analysis and numerical simulations have demonstrated that diffusion and buoyancy contributions to the hydrogen transport from the tank surface are balanced within 1 min from the start of the process. The quasi-steady state conditions within the enclosure with approximately linear distribution of hydrogen from the top to the bottom are established in about 1 h for both considered permeation rates: 1 NmL/hr/L of tank capacity and 45 NmL/hr/L the last being an equivalent to the SAE J2578 requirements. Finally, the numerical simulations demonstrated that the difference in hydrogen concentration between the garage ceiling and floor is negligible compared to the lower flammability limit of 4% by volume of hydrogen.  相似文献   

5.
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However, even if unignited, the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus, to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1, 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus, with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter, which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation, codes and standards in the field should address this issue.  相似文献   

6.
In the frame of the EC-funded project HYPER [1] Pro-Science GmbH performed distribution and combustion experiments on the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet using a generic enclosure model with the dimensions of a commercially available fuel cell application. Hydrogen amounts from 1.5 to 15 g were released within 1 s into the enclosure. In distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Subsequently combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe characteristics and hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen releases into a partly vented and partly obstructed enclosure with different venting characteristics.  相似文献   

7.
The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet fires or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-mm-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.  相似文献   

8.
This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the “thermal inertia” of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes.  相似文献   

9.
A medium-scale model (1/10) of an underground parking garage is designed and built to study the characteristics of the release and dispersion of hydrogen leaked from hydrogen fuel cell vehicles (HFCVs) in underground garages. Helium is used in place of hydrogen for safety reasons. The helium release experiments are conducted and the variations in helium concentrations at different locations and times in the garage model are obtained. The influence mechanisms of the leakage flow rate and nozzle diameter on the spatial and temporal distributions of the helium concentration are revealed. The experimental results show that the initial release rate of helium is the key factor affecting the distribution of helium concentrations. Both leakage flow rate and nozzle diameter have a significant influence on helium concentrations by affecting the initial release rate. If the release time is long enough, the helium concentrations will experience three stages during release, namely, rapid growth, slow growth and relatively stable. Furthermore, the beams of the garage can reduce the area on the ceiling where the hydrogen concentration exceeds the lower flammable limit (LFL). On the other hand, the beams can make it easier for local hydrogen concentrations to reach the LFL. This work can provide theoretical support for the design and construction of underground parking garages and the arrangement of hydrogen detectors.  相似文献   

10.
In premixed H2/air explosion venting, an under-expansion jet may be caused by the pressure difference between the inside and outside of the explosion vent. Based upon the under-expansion jet, studying the structure of the under-expansion jet flame and the factors influencing its formation is essential to hydrogen safety in explosion venting. This study explored the basic characteristics of the under-expansion jet flame in premixed H2/air explosion venting, and discussed the formation of two under-expansion structures (Mach disk and diamond shock wave) of such jet flames by conducting a premixed H2/air explosion venting experiment. The influences of hydrogen fraction, explosion venting diameter, and duct length on the structure of under-expansion jet flames were evaluated. The results showed that after successful explosion venting, the under-expansion jet flame would be generated when the hydrogen fractions were 30–60 vol.%, and as the hydrogen fractions were 30–50 vol.%, the lengths of the venting duct were 30 and 50 cm. The duration of under-expansion jet flame was the longest when the hydrogen fraction was 40 vol.%. With the explosion venting diameter and hydrogen fraction increased, the spacing between under-expansion jet flame structures (S) increased. However, an increase in duct length led to the attenuation of the S. During the explosion venting, the under-expansion jet caused a pressure imbalance near the explosion vent and high-intensity convection forms on both sides of a jet, which can generate two or more explosions. Therefore, understanding the basic characteristics of under-expansion jet flame can aid the effective development of measures to prevent, mitigate, and protect against premixed H2/air explosions.  相似文献   

11.
In this paper hydrogen assisted catalytic combustion of methane on rhodium is numerically modeled in steady condition. The aim of the work goes to better understand how the addition of hydrogen affects the combustion of methane–air. For this purpose, a micro flatbed channel is investigated by a three-dimensional simulation including an elementary-step surface reaction mechanism. It is clearly shown through a numerical study that appropriate hydrogen addition increases the conversion of methane and expands the lower limit of burnable equivalence ratio. In addition, the main effect of hydrogen is thermal when the mass fraction of hydrogen addition is less than 0.67%, while not only thermal effect but also chemical effect appears when the mass fraction is more than 0.67%. The sharp decreases of hydrogen fraction appear twice till hydrogen fraction increases from 0.67%. In addition, the first abrupt decline increases Rh(s) coverage to create favorable conditions for adsorption and oxidation of methane and it can suddenly reduce the ignition temperature 15 K and advance ignition distance 3%. Thanks to the second sharp decline, the adsorption–desorption equilibrium of oxygen slowly shifts towards desorption with increasing temperature to increase Rh(s) coverage.  相似文献   

12.
This paper describes an experimental programme on vented hydrogen deflagrations, which formed part of the Hyindoor project, carried out for the EU Fuel Cells and Hydrogen Joint Undertaking. The purpose of this study was to investigate the validity of analytical models used to calculate overpressures following a low concentration hydrogen deflagration. Other aspects of safety were also investigated, such as lateral flame length resulting from explosion venting. The experimental programme included the investigation of vented hydrogen deflagrations from a 31 m3 enclosure with a maximum internal overpressure target of 10 kPa (100 mbar). The explosion relief was provided by lightly covered openings in the roof or sidewalls. Uniform and stratified initial hydrogen distributions were included in the test matrix and the location of the ignition source was also varied. The maximum hydrogen concentration used within the enclosure was 14% v/v. The hydrogen concentration profile within the enclosure was measured, as were the internal and external pressures. Infrared video images were obtained of the gases vented during the deflagrations. Findings show that the analytical models were generally conservative for overpressure predictions. Flame lengths were found to be far less than suggested by some guidance. Along with the findings, the methodology, test conditions and corresponding results are presented.  相似文献   

13.
In order to simulate an accidental hydrogen release from the low pressure pipe system of a hydrogen vehicle a systematic study on the nature of transient hydrogen jets into air and their combustion behaviour was performed at the FZK hydrogen test site HYKA. Horizontal unsteady hydrogen jets with an amount of hydrogen up to 60 STP dm3 and initial pressures of 5 and 16 bar have been investigated. The hydrogen jets were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen-air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.  相似文献   

14.
Experiments were conducted in an enclosure with the same overall dimensions as a 40-foot ISO container to study the vented hydrogen-air deflagrations. This work focuses on the effects of hydrogen concentration, ignition location and obstacles on the overpressure and the structural response of the container wall. For center ignition, three overpressure peaks, which resulted from the vent opening, Helmholtz oscillation and acoustic oscillation, respectively, were recorded inside the container without obstacles. However, with the increase of hydrogen concentration, the third overpressure peak disappears when the obstacles are added in the container. Unlike center ignition, only two overpressure peaks were observed for back ignition. Due to the difference in reactivity of hydrogen-air mixture, the first overpressure peak is generated by the vent burst for low hydrogen concentration, or the venting of flame for high hydrogen concentration. The overpressure induced by the flame-acoustic interaction was not monitored with the increase of the hydrogen concentration and the installation of obstacles for back ignition. The overpressure for back ignition is more influenced by the obstacles than that for center ignition, when hydrogen concentration is larger than 12%. The displacement-time curves share similar trends with the pressure-time curves. The first peak displacement changes linearly with the corresponding first peak overpressure. However, the displacement caused by the second overpressure peak is significantly increased, especially for high hydrogen concentration and back ignition in the case with two obstacles.  相似文献   

15.
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3, 4, and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.  相似文献   

16.
Research and development programs toward fuel cells and other hydrogen technologies have increased significantly during the past two decades. These programs require appropriate facilities to undertake the research and development programs. This paper discusses the design layout of one such facility, the “Missouri S&T EcoCAR Hydrogen Vehicle Garage”, which can be used as a model while designing a hydrogen R&D garage. The Missouri S&T EcoCAR garage is a 12.2 m × 7.6 m garage situated at the Missouri University of Science and Technology (Missouri S&T) and serves as the headquarters for the Missouri S&T EcoCAR team. Within the garage, students will gain real-world, hands-on experience by transforming a standard production vehicle into a hydrogen Fuel Cell Plug-in Hybrid Electric Vehicle (FC-PHEV). The garage is classified as a Class 1 Division 2, Group B hazardous location and is equipped to safely test and integrate the vehicle prototype. Specifically, the design includes (i) a hydrogen gas detection system, (ii) hazardous location electrical service, heating, ventilation and air-conditioning, lighting, and compressed air systems, and (iii) emergency backup electric power system with alarms/monitors/security cameras for the hydrogen R&D facility. The garage will be connected to an external backup power supply unit which will be powered by a PEM fuel cell.  相似文献   

17.
This study proposes the use of the hydrogenoxygen catalytic recombination reaction to safely eliminate the leaked hydrogen in a confined environment. Experiments on the hydrogenoxygen reaction catalyzed by using Pt/C as a catalyst are conducted at ambient temperature in a small cylindrical vessel. The macroscopic kinetic process of the hydrogenoxygen recombination reaction is investigated, and the effects of the reaction parameters, such as the initial hydrogen volume fraction and catalyst layer position, on the reaction temperature and hydrogen conversion are examined. The reaction temperature and temperature rise rate are shown to reach the maximum values when the initial hydrogen fraction is 70 vol%. When the initial hydrogen fraction is ≤ 67 vol%, the hydrogen conversion reaches 100%. After the initial hydrogen fraction is > 67 vol%, the hydrogen conversion decreases significantly, and the hydrogen conversion is only 53% for the initial hydrogen fraction is up to 80 vol%. Moreover, the position of the catalyst layer has a significant effect on the reaction rate and heat distribution inside the vessel. When the catalyst layer is near the bottom of the reaction vessel, the reaction rate is accelerated and the released heat accumulates at the bottom of the vessel. The influence law of the aforementioned factors can provide a technical reference for applications of the hydrogenoxygen catalytic reaction.  相似文献   

18.
The catalytic effect of rare-earth hydrogen storage alloy is investigated for dehydrogenation of alane, which shows a significantly reduced onset dehydrogenation temperature (86 °C) with a high-purity hydrogen storage capacity of 8.6 wt% and an improved dehydrogenation kinetics property (6.3 wt% of dehydrogenation at 100 °C within 60 min). The related mechanism is that the catalytic sites on the surface of the hydrogen storage alloy and the hydrogen storage sites of the entire bulk phase of the hydrogen storage reduce the dehydrogenation temperature of AlH3 and improve the dehydrogenation kinetic performance of AlH3. This facile and effective method significantly improves the dehydrogenation of AlH3 and provides a promising strategy for metal hydride modification.  相似文献   

19.
Hydrogen is a promising energy carrier that will become competitive in the near future. The present study modeled hydrogen leaks and diffusion in an actual size underground parking garage with the numerical model validated by scale experimental data. The results show that the hydrogen concentration distributions are not uniform in the gas mixture layer along the ceiling and the initial front velocity of the gas mixture layer decays with horizontal distance from the leaking car. The vertical filling front velocity for times after 600 s remain constant in the near field but increases linearly with distance in the far field. The corner walls did not significantly affect the far-field concentration distributions and the ventilation layout with vents in the garage corners provided better hydrogen removal. These results can be used to predict the hydrogen concentration buildup in large confined spaces and to help design underground parking garage ventilation systems.  相似文献   

20.
Passive auto-catalytic recombiners (PARs) may be used in the future as safety devices inside confined areas for the removal of accidentally released hydrogen. In the presented study, it was investigated whether a PAR designed for hydrogen removal inside an NPP containment would principally work inside a typical surrounding of hydrogen or fuel cell applications. For this purpose, a hydrogen release scenario inside a garage – based on experiments performed by CEA in the GARAGE facility (France) – has been simulated with and without PAR installation. For modeling the operational behavior of the PAR, the in-house code REKO-DIREKT was implemented in the CFD code ANSYS-CFX. The study was performed in three steps: First, a helium release scenario was simulated and validated against experimental data. Second, helium was replaced by hydrogen in the simulation. This step served as a reference case for the unmitigated scenario. Finally, the numerical garage setup was enhanced with a commercial PAR model. The study shows that the PAR works efficiently by removing hydrogen and promoting mixing inside the garage. The hot exhaust plume promotes the formation of a thermal stratification that pushes the initial hydrogen rich gas downwards and in direction of the PAR inlet. The paper describes the code implementation and simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号