首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanoindentation has been utilised to track the mechanical effects of hydrogen on palladium foils over a range of hydrogen concentrations. The miscibility gap in the palladium–hydrogen system yields discrete phases over a range of compositions. It is shown that nanoindentation can measure the extent of hydrogen-induced phase transformations across the film thickness after hydrogen removal, with the α → β → α phase transformations yielding a ∼50% increase in local hardness. Interstitial hydrogen was observed to promote work hardening in β phase regions, and a ∼75% increase in hardness was observed in regions where the α phase was saturated with hydrogen.  相似文献   

2.
The unstretched laminar burning velocities and Markstein numbers of spherically propagating hydrogen–methane–air flames were studied at a mixture pressure of 0.10 MPa and a mixture temperature of 350 K. The fraction of hydrogen in the binary fuel was varied from 0 to 1.0 at equivalence ratios of 0.8, 1.0 and 1.2. The unstretched laminar burning velocity increased non-linearly with hydrogen fraction for all the equivalence ratios. The Markstein number varied non-monotonically at equivalence ratios of 0.8 and 1.0 and increased monotonically at equivalence ratio of 1.2 with increasing hydrogen fraction. Analytical evaluation of the Markstein number suggested that the trends could be due to the effective Lewis number, which varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0 and increased monotonically at 1.2. The propensity of flame instability varied non-monotonically with hydrogen fraction at equivalence ratios of 0.8 and 1.0.  相似文献   

3.
In the present work, the laminar premixed acetylene–hydrogen–air and ethanol–hydrogen–air flames were investigated numerically. Laminar flame speeds, the adiabatic flame temperatures were obtained utilizing CHEMKIN PREMIX and EQUI codes, respectively. Sensitivity analysis was performed and flame structure was analyzed. The results show that for acetylene–hydrogen–air flames, combustion is promoted by H and O radicals. The highest flame speed (247 cm/s) was obtained in mixture with 95% H2–5% C2H2 at λ = 1.0. The region between 0.95 < XH2 < 1.0 was referred to as the acetylene-accelerating hydrogen combustion since the flame speed increases with increase the acetylene fraction in the mixture. Further increase in the acetylene fraction decreases the H radicals in the flame front. In ethanol–hydrogen–air mixtures, the mixture reactivity is determined by H, OH and O radicals. For XH2 < 0.6, the flame speed in this regime increases linearly with increasing the hydrogen fraction. For XH2 > 0.8, the hydrogen chemistry control the combustion and ethanol addition inhibits the reactivity and reduces linearly the laminar flame speed. For 0.6 < XH2 < 0.8, the laminar flame speed increases exponentially with the increase of hydrogen fraction.  相似文献   

4.
The possibilities of the formation of a flammable cloud over the ground in an open atmosphere from the leakage of hydrogen stored at different temperatures are studied. The dispersion of hydrogen in the stable and unstable atmospheric conditions is determined using the Gaussian dispersion model. The efflux of hydrogen from the storage vessel is considered at velocities between 1 m/s and 1500 m/s, the latter corresponding to the upper limit of velocities arising from the choked flow. The dispersion analysis shows that flammable hydrogen–air clouds would not be formed over the ground under unstable atmospheric conditions for all efflux velocities and leakage areas and for the different temperatures of the hydrogen leak. However, under strongly stable atmospheric conditions, such as those associated with clear sky winter nights with low winds and temperature inversion in the planetary boundary layer, a flammable cloud is seen to be formed. This is particularly true for low temperature hydrogen efflux and very low velocities of the efflux.  相似文献   

5.
6.
The laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of hydrogen–air and different composition of hydrogen–methane–air mixtures (from 100% hydrogen to 100% methane) have been measured at ambient temperatures for variable equivalence ratios (ER=0.8–3.2ER=0.83.2). A modified test rig has been developed from the former Cardiff University ‘Cloud Chamber’ for this experimental study. The rig comprises of a 250 mm length cylindrical stainless steel explosion bomb enclosed at one end with a stainless steel plug which houses an internal stirrer to allow mixing. The other end is sealed with a 120 mm diameter round quartz window. Optical access for filming flame propagation is afforded via two diametrically opposed quartz windows in both sides. Flame speeds are determined within the bomb using a high-speed Schlieren photographic technique. This method is an accurate way to determine the flame–speed and the burning velocities were then derived using a CHEMKIN computer model to provide the expansion ratio. The design of the test facility ensures the flame is laminar which results in a spherical flame which is not affected by buoyancy. The experimental study demonstrated that increasing the hydrogen percentage in the hydrogen–methane mixture brought about an increase in the resultant burning velocity and caused a widening of the flammability limits. This experiments also suggest that a hydrogen–methane mixture (i.e. 30% hydrogen+70% methane) could be a competitive alternative fuel for existing combustion plants.  相似文献   

7.
8.
This paper presents results of an experimental investigation on detonation wave propagation in semi-confined geometries. Large scale experiments were performed in layers up to 0.6 m filled with uniform and non-uniform hydrogen–air mixtures in a rectangular channel (width 3 m; length 9 m) which is open from below. A semi confined driver section is used to accelerate hydrogen flames from weak ignition to detonation. The detonation propagation was observed in a 7 m long unobstructed part of the channel. Pressure measurements, ionization probes, soot-records and high speed imaging were used to observe the detonation propagation. Critical conditions for detonation propagation in different layer thicknesses are presented for uniform H2/air-mixtures, as well as experiments with uniform H2/O2 mixtures in a down scaled transparent channel. Finally detail investigations on the detonation wave propagation in H2/air-mixtures with concentration gradients are shown.  相似文献   

9.
10.
The combustion of preheated lean homogeneous mixtures of hydrogen with methane in air in a catalytic packed-bed reactor was modeled at atmospheric pressure. The non-equilibrium, one-dimensional model developed employs multi-step surface and gas-phase reactions and accounts for the three modes of heat transfer within the bed as well as for heat loss from the bed. The catalyst considered was platinum. It was demonstrated that the model could predict the effects of changes in operational conditions such as inlet mixture temperature, fuel composition and mixture equivalence ratio on the methane and hydrogen conversions, as well as species concentrations and gas temperature profiles along the bed. It was shown that the hydrogen is consumed completely within the early part of the reactor length in all the cases considered for simulations. It was also shown that the improving effect of hydrogen on methane conversion is particularly evident at relatively low inlet temperatures and for very lean mixtures. However, this effect diminishes significantly with increasing inlet temperature and equivalence ratio. It was also shown that the positive effect of hydrogen addition which is more pronounced at its low concentrations in the fuel mixture, decreases somewhat with a further increase of the hydrogen content. The displayed trends were in good agreement with the corresponding experimentally observed.  相似文献   

11.
A volumetric experimental set-up used for measuring hydrogen absorption–desorption characteristics of hydrogen storage material will be presented. Although the experimental set-up is mainly employed to do hydrogen absorption–desorption cycling (including pressure cycling and thermal cycling) measurement automatically, it also can incidentally provide general measurements such as pressure-composition-temperature (P–C–T) curves and kinetics measurements in manual way in the ranges of 0.004–12 MPa and 213–773 K. The experimental set-up can be used to investigate the influence of hydrogen absorption–desorption cycles to hydrogen storage properties of material. The leakage rate of the whole experimental set-up was evaluated systemically. The usability and reliability of the experimental set-up were checked with LaNi5 and Pd/K (kieselguhr).  相似文献   

12.
Energy crises and the preservation of the global environment are placed man in a dilemma. To deal with these problems, finding new sources of fuel and developing efficient and environmentally friendly energy utilization technologies are essential. Hydrogen containing fuels and combustion under condition of the moderate or intense low-oxygen dilution (MILD) are good choices to replace the traditional ones. In this numerical study, the turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is considered to emulate the combustion of hydrogen containing fuels under MILD conditions. This flame is related to the experimental condition of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147–1154]. In general, the modelling is carried out using the EDC model, to describe turbulence–chemistry interaction, and the DRM-22 reduced mechanism and the GRI2.11 full mechanism to represent the chemical reactions of H2/methane jet flame. The effect of hydrogen content of fuel on flame structure for two co-flow oxygen levels is studied by considering three fuel mixtures, 5%H2+95%CH4, 10%H2+90%CH4 and 20% H2+80%CH4(by mass). In this study, distribution of species concentrations, mixture fraction, strain rate, flame entrainment, turbulent kinetic energy decay and temperature are investigated. Results show that the hydrogen addition to methane leads to improve mixing, increase in turbulent kinetic energy decay along the flame axis, increase in flame entrainment, higher reaction intensities and increase in mixture ignitability and rate of heat release.  相似文献   

13.
Mg1.5Ti0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4), Mg1.5Ti0.3Zr0.1Pd0.1Ni and Mg1.5Ti0.3Zr0.1Co0.1Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that all the replacement elements (Ti, Zr, Pd and Co) perfectly dissolved in the amorphous phase and Zr facilitated the amorphization of the alloys. When the Zr/Ti ratio was kept at 1/4 (Mg1.5Ti0.4Zr0.1Ni alloy), the initial discharge capacity of the alloy increased slightly at all the ball milling durations. The further increase in the Zr/Ti ratio resulted in reduction in the initial discharge capacity of the alloys. The presence of Zr in the Ti-including Mg-based alloys improved the cyclic stability of the alloys. This action of Zr was attributed to the less stable and more porous characteristics of the barrier hydroxide layer in the presence of Zr due to the selective dissolution of the disseminated Zr-oxides throughout the hydroxide layer on the alloy surface. Unlike Co, the addition of Pd into the Mg–Ti–Zr–Ni type alloy improved the alloy performance significantly. The positive contribution of Pd was assumed to arise from the facilitated hydrogen diffusion on the electrode surface in the presence of Pd. As the Zr/Ti atomic ratio increased, the charge transfer resistance of the alloy decreased at all the depths of discharges. Co and Pd were observed to increase the charge transfer resistance of the Mg–Ti–Zr–Ni alloys slightly.  相似文献   

14.
An experimental and theoretical study of a metal–hydrogen reactor (LaNi5–H2) is presented. The first goal of this study is to experimentally determine the effectivethermal conductivity, the conductance between the hydride bed and the fluid around the reactor,the equilibrium pressure and the expression of the reaction kinetics, taking into account the initialcondition, the temperature and the applied hydrogen pressure temporal evolution. The secondgoal is to test the validity of the theoretical model by comparison between theoretical andexperimental results.  相似文献   

15.
To achieve carbon neutrality by 2060, decarbonization in the energy sector is crucial. Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons: use of power-to-hydrogen (P2H) can avoid carbon emissions from hydrogen production, which is traditionally performed using fossil fuels; Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand. In this study, we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system, particularly that derived from hydrogen storage. An electricity–hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy. Based on this model and considering Northwest China as the region of study, the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels. The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term, contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost. This advantage can be further improved when the hydrogen demand rises. However, a cost reduction by 20% is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems. This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.  相似文献   

16.
Experiments on duct-vented explosions of hydrogen–air mixtures in a 12.3 l cylindrical vessel were conducted, and the effects of duct length and hydrogen concentration on the maximum overpressure and flame behavior within and outside the vented enclosure were investigated. The results show that the maximum overpressure in the vessel first increased and then was maintained nearly unchanged with the length of a relief duct increasing to 2 m. For a given duct length, the maximum overpressure first increased and then decreased when hydrogen concentration increased from 20% to 55%. The burn-up in the duct caused the gas mixtures to move in reverse from the duct to vessel, which consequently decreased the venting efficiency. A pressure wave caused by burn-up in the duct was observed, which resulted in a pressure peak in the external pressure–time histories after it traveled outside the duct. The maximum external overpressure first increased and then decreased with an increase in duct length. For a given duct length, the maximum external overpressure increased with an increase in hydrogen concentration.  相似文献   

17.
Experimental data from vented explosion tests using lean hydrogen–air mixtures with concentrations from 12 to 19% vol. are presented. A 63.7-m3 chamber was used for the tests with a vent size of either 2.7 or 5.4 m2. The tests were focused on the effect of hydrogen concentration, ignition location, vent size, and obstacles on the pressure development of a propagating flame in a vented enclosure. The dependence of the maximum pressure generated on the experimental parameters was analyzed. It was confirmed that the pressure maxima are caused by pressure transients controlled by the interplay of the maximum flame area, the burning velocity, and the overpressure generated outside of the chamber by an external explosion. A model proposed earlier to estimate the maximum pressure for each of the main pressure transients was evaluated for the various hydrogen concentrations. The effect of the Lewis number on the vented explosion overpressure is discussed.  相似文献   

18.
To research the quality of the hydrogen–air mixture formation and the combustion characteristics of the hydrogen fueled engine under different hydrogen injection timings, nozzle hole positions and nozzle hole diameter, a three-dimensional simulation model for a PFI hydrogen internal combustion engine with the inlet, outlet, valves and cylinder was established using AVL Fire software. In the maximum torque condition, research focused on the variation law of the total hydrogen mass in the cylinder and inlet and the space distribution characteristics and variation law of velocity field, concentration field and turbulent kinetic energy under different hydrogen injection parameters (injection timings, nozzle hole positions and nozzle hole area) in order to reveal the influence of these parameters on hydrogen–air mixture formation process. Then the formation quality of hydrogen–air mixture was comprehensively evaluated according to the mixture uniformity coefficient, the remnant hydrogen percentage in the inlet and restraining abnormal combustion (such as preignition and backfire). The results showed that the three hydrogen injection parameters have important influence on the forming quality of hydrogen–air mixture and combustion state. The reasonable choice of the nozzle hole position of hydrogen, nozzle hole diameter and the hydrogen injection time can improve the uniformity of the hydrogen–air mixing in the cylinder of the hydrogen internal combustion engine, and the combustion heat release reaction is more reasonable. At the end of the compression stroke, the equivalence ratio uniform coefficient increased at first and then decreased with the beginning of the hydrogen injection. When hydrogen injection starting point was with 410–430°CA, equivalence ratio uniform coefficient was larger, and ignition delay period was shorter so that the combustion performance index was also good. And remnant hydrogen percentage in the inlet was less, high concentration of mixed gas in the vicinity of the inlet valve also gathered less, thus suppressing the preignition and backfire. With the increase of the distance between the nozzle and the inlet valve, the selection of the hydrogen injection period is narrowed, and the optimum hydrogen injection time was also ahead of time. The results also showed that it was favorable for the formation of uniform mixing gas when the nozzle hole diameter was 4 mm.  相似文献   

19.
We measured dependences of the electrical resistance on time of isothermal annealing for Zr rods saturated electrolytically by hydrogen or deuterium. The annealing of samples was carried out at temperatures 305–498 K. The resistance of inhomogeneously saturated samples increased with the time of annealing. The model of diffusion of the hydrogen from the surface of the sample into its volume described this increase adequately. The resistance of homogeneously saturated samples had a minimum at some time of annealing. We showed that the decrease of the resistance during annealing obeyed the exponential law, and that the characteristic time of the decrease obeyed the Arrhenius law with the activation energy about 0.16 eV. We supposed that the resistance decreases due to the formation of the hydride in the saturated layer or on the boundaries of grains.  相似文献   

20.
By utilizing a newly designed constant volume combustion bomb (CVCB), turbulent flame combustion phenomena are investigated using hydrogen–air mixture under the initial pressures of 1 bar, 2 bar and 3 bar, including flame acceleration, turbulent flame propagation and flame–shock interaction with pressure oscillations. The results show that the process of flame acceleration through perforated plate can be characterized by three stages: laminar flame, jet flame and turbulent flame. Fast turbulent flame can generate a visible shock wave ahead of the flame front, which is reflected from the end wall of combustion chamber. Subsequently, the velocity of reflected shock wave declines gradually since it is affected by the compression wave formed by flame acceleration. In return, the propagation velocity of turbulent flame front is also influenced. The intense interaction between flame front and reflected shock can be captured by high-speed schlieren photography clearly under different initial pressures. The results show that the propagation velocity of turbulent flame rises with the increase of initial pressure, while the forward shock velocities show no apparent difference. On the other hand, the reflected shock wave decays faster under higher initial pressure conditions due to the faster flame propagation. Moreover, the influence of initial pressure on pressure oscillations is also analyzed comprehensively according to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号