共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
In this paper, a novel 3D flexible tool for simulation of metal hydrides-based (LaNi5) hydrogen storage tanks is presented. The model is Finite Element-Based and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature metal hydride reactor. The governing equations were implemented and solved using the COMSOL Multiphysics simulation environment. A cylindrical reactor with different cooling system designs was simulated. The shortest reactor fill time (15 min) was obtained for a cooling design configuration consisting of twelve inner cooling tubes and an external cooling jacket. Additional simulations demonstrated that an increase of the hydride thermal conductivity can further improve the reactor dynamic performance, provided that the absorbent bed is sufficiently permeable to hydrogen. 相似文献
3.
A. Souahlia H. DhaouS. Mellouli F. AskriA. Jemni S. Ben Nasrallah 《International Journal of Hydrogen Energy》2014
Metal hydride-based hydrogen storage tank is tested using 1 kg of AB5 alloy, namely LaNi5. The hydrogen tank is of annular cylindrical with inner and outer heat exchangers. The inner one is a finned spiral heat exchanger and the outer one is a conventional jacket. Performance (storage capacity and storage time) studies are carried out by varying the supply pressure and the cooling temperature of the hydride bed. At any given cooling temperature, hydrogen storage rate is found to increase with supply pressure. Cooling temperature is found to have a significant effect on hydrogen storage capacity at lower supply pressures. 相似文献
4.
5.
Claudio Corgnale Bruce J. HardyDavid A. Tamburello Stephen L. GarrisonDonald L. Anton 《International Journal of Hydrogen Energy》2012
The design and evaluation of media-based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. 相似文献
6.
This paper examines the dynamics of metal hydride storage systems by experimentation and numerical modelling. A specially designed and instrumented metal hydride tank is used to gather data for a cyclic external hydrogen load. Thermocouples provide temperature measurements at various radial and axial locations in the metal hydride bed. This data is used to validate a two-dimensional mathematical model previously developed by the authors. The model is then used to perform a parametric study on some of the key variables describing metal hydride systems. These variables are the equilibrium pressure, where the tails and concentration dependence are investigated, and the effective thermal conductivity of the metal hydride bed, where the pressure and concentration dependence are analyzed. Including tails on the equilibrium pressure curves was found to be important particularly for the accuracy of the initial cycles. Introducing a concentration dependence for the plateau region of the equilibrium pressure curve was found to be important for both pressure and temperature results. Effective thermal conductivity was found to be important, and the inclusion of pressure and concentration dependence produced more precise modelling results. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(34):18927-18938
Heat transfer in metal hydride bed significantly affects the performance of metal hydride reactors (MHRs). Enhancing heat transfer within the reaction bed improves the hydriding rate. This study presents performance analysis in terms of storage capacity and time of three different cylindrical MHR configurations using storage media LaNi5: a) reactor cooled with natural convection, b) reactor with a heat pipe on the central axis, c) reactor with finned heat pipe. This study shows the impact of using heat pipes and fins for enhancing heat transfer in MHRs at varying hydrogen supply pressures (2–15 bar). At any absorption temperature, hydrogen absorption rate and hydrogen storage capacity increase with the supply pressure. Results show that using a heat pipe improves hydrogen absorption rate. It was found that finned heat pipe has a significant effect on the hydrogen charge time, which reduced by approximately 75% at 10 bar hydrogen supply pressure. 相似文献
8.
In this paper, a performance analysis of a metal hydride based hydrogen storage container with embedded cooling tubes during absorption of hydrogen is presented. A 2-D mathematical model in cylindrical coordinates is developed using the commercial software COMSOL Multiphysics 4.2. Numerical results obtained are found in good agreement with experimental data available in the literature. Different container geometries, depending upon the number and arrangement of cooling tubes inside the hydride bed, are considered to obtain an optimum geometry. For this optimum geometry, the effects of various operating parameters viz. supply pressure, cooling fluid temperature and overall heat transfer coefficient on the hydriding characteristics of MmNi4.6Al0.4 are presented. Industrial-scale hydrogen storage container with the capacity of about 150 kg of alloy mass is also modeled. In summary, this paper demonstrates the modeling and the selection of optimum geometry of a metal hydride based hydrogen storage container (MHHSC) based on minimum absorption time and easy manufacturing aspects. 相似文献
9.
On-board hydrogen storage systems employing high-pressure metal hydrides promise advantages including high volumetric capacities and cold start capability. In this paper, we discuss the development of a system simulation model in Matlab/Simulink platform. Transient equations for mass balance and energy balance are presented. Appropriate kinetic expressions are used for the absorption/desorption reactions for the Ti1.1CrMn metal hydride. During refueling, the bed is cooled by passing a coolant through tubes embedded within the bed while during driving, the bed is heated by pumping the radiator fluid through same set of tubes. The feasibility of using a high-pressure metal hydride storage system for automotive applications is discussed. Drive cycle simulations for a fuel cell vehicle are performed and detailed results are presented. 相似文献
10.
Alicia Li Jen Keow Amy Mayhall Marzia Cescon Zheng Chen 《International Journal of Hydrogen Energy》2021,46(1):837-851
Metal hydride (MH) hydrogen storage is used in both mobile and stationary applications. MH tanks can connect directly to high-pressure electrolyzers for on-demand charging, saving compression costs. To prevent high hydrogen pressure during charging, hydrogen generation needs to be controlled with consideration for unknown disturbances and time-varying dynamics. This work presents a robust control system to determine the appropriate mass flow rate of hydrogen, which the water electrolyzer should produce, to maintain the gaseous hydrogen pressure in the tank for the hydriding reaction. A control-oriented model is developed for MH hydrogen storage for control system design purposes. A proportional-integral (PI) and an active disturbance rejection control (ADRC) feedback controllers are investigated, and their performance is compared. Simulation results show that both the PI and ADRC controllers can reject both noises from the output measurements and unknown disturbances associated with the heat exchanger. ADRC excels in eliminating disturbances produced by the input mass flow rate, maintaining the pressure of the tank at the charging pressure with little oscillations. Additionally, the parameters estimated by the ADRC's extended state observer was used to predict the state-of-charge (SOC) of the MH. 相似文献
11.
12.
This communication describes a new hybrid method for storing hydrogen in solid inorganic hydride materials as well as producing it from water based on the reaction between LiOH/LiOH·H2O and LiH. As a hydrogen storage method, the release and uptake of hydrogen in this method are accomplished via a series of simple reactions with good kinetics within a practically reasonable temperature range. The reversible hydrogen storage capacity of the material system is 6–8.8 wt.% at <350 °C. This capacity is one of the highest among all other metal hydrides known to date in the same temperature range. As a hydrogen production method, 100% of hydrogen generated by this method comes from water by its reaction with alkali metal oxides. This method is also an environmentally friendly alternative to the current commercial processes for hydrogen production. The preliminary thermodynamic calculation on energy required for complete regeneration shows that the current system is energetically favorable. 相似文献
13.
Terry A. Johnson Michael P. Kanouff Daniel E. Dedrick Gregory H. Evans Scott W. Jorgensen 《International Journal of Hydrogen Energy》2012
Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. 相似文献
14.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation. 相似文献
15.
Environmental reactivity of solid-state hydrogen storage systems: Fundamental testing and evaluation
Charles W. James Jose A. Cortes-ConcepcionDavid A. Tamburello Donald L. Anton 《International Journal of Hydrogen Energy》2012
In order to enable the commercial acceptance of solid-state hydrogen storage materials and systems it is important to understand the risks associated with the environmental exposure of various materials. In some instances, these materials are sensitive to the environment surrounding the material and the behavior is unique and independent to each material. The development of testing procedures to evaluate a material’s behavior with different environmental exposures is a critical need. In some cases material modifications may be needed in order to reduce the risk of environmental exposure. We have redesigned two standardized UN tests for clarity and exactness; the burn rate and self-heating tests. The results of these and other UN tests are shown for ammonia borane, NH3BH3, and alane, AlH3. The burn rate test showed a strong dependence on the preparation method of aluminum hydride as the particle size and trace amounts of solvent greatly influence the test results. The self-heating test for ammonia borane showed a failed test as low as 70 °C in a modified cylindrical form. Finally, gas phase calorimetry was performed and resulted in an exothermic behavior within an air and 30%RH environment. 相似文献
16.
In this paper, a three-dimensional hydrogen absorption model is developed to precisely study the hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed 3D simulation results show that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that hydrogen absorption is very efficient early during the hydriding process; thus, the local cooling effect is not influential. On the other hand, non-uniform distributions are predicted at the subsequent absorption stage, which is mainly due to differential degrees of cooling between the vessel wall and core regions. In addition, a parametric study is carried out for various designs and hydrogen feed pressures. This numerical study provides a fundamental understanding of the detailed heat and mass transfer phenomena during the hydrogen absorption process and further indicates that efficient design of the storage vessel and cooling system is critical to achieve rapid hydrogen charging performance. 相似文献
17.
Design of the heat exchanger in a metal hydride based hydrogen storage system influences the storage capacity, gravimetric hydrogen storage density, and refueling time for automotive on-board hydrogen storage systems. The choice of a storage bed design incorporating the heat exchanger and the corresponding geometrical design parameters is not obvious. A systematic study is presented to optimize the heat exchanger design using computational fluid dynamics (CFD) modeling. Three different shell and tube heat exchanger designs are chosen. In the first design, metal hydride is present in the shell and heat transfer fluid flows through straight parallel cooling tubes placed inside the bed. The cooling tubes are interconnected by conducting fins. In the second design, heat transfer fluid flows through helical tubes in the bed. The helical tube design permits use of a specific maximum distance between the metal hydride and the coolant for removing heat during refueling. In the third design, the metal hydride is present in the tubes and the fluid flows through the shell. An automated tool is generated using COMSOL-MATLAB integration to arrive at the optimal geometric parameters for each design type. Using sodium alanate as the reference storage material, the relative merits of each design are analyzed and a comparison of the gravimetric and volumetric hydrogen storage densities for the three designs is presented. 相似文献
18.
Marzia Pentimalli Franco Padella Aurelio La Barbera Luciano Pilloni Enrico Imperi 《Energy Conversion and Management》2009,50(12):3140-3146
To address the issue of the breakdown into fine powders that occurs in the practical use of metal hydrides, the possibility of using a polymeric material as a matrix that contains the active metal particles was experimentally assessed. A ball milling approach in the tumbling mode was used to develop a metal hydride–polymer composite with a high metal to polymer weight ratio. The alloy powder was blended with the polymer and a coating of the metal particles was obtained. The composite was consolidated by hot pressing and the pellets were characterized in terms of their hydriding–dehydriding properties. The materials did not show significant losses in either loading capacity or kinetic properties. The polymeric matrix resulted as being stable under hydrogen cycling. Further, from SEM observation it was confirmed that the metal powders remained embedded in the polymeric matrix even after a number of cycles and that the overall dimensional integrity was retained. 相似文献
19.
《International Journal of Hydrogen Energy》2022,47(24):12240-12250
This paper describes a technical feasibility study of on-board metal hydride storage systems. The main advantages of these systems would be that of being able to replace counterweights with the weight of the storage system and using the heat emissions of fuel cells for energy, making forklifts a perfect use case. The main challenge is designing a system that supplies the required energy for a sufficiently long period. A first draft was set up and analyzed to provide a forklift based on a fuel cell with hydrogen from HydralloyC5 or FeTiMn. The primary design parameter was the required amount of stored hydrogen, which should provide energy equal to the energy capacity of a battery in an electric vehicle. To account for highly dynamic system requirements, the reactor design was optimized such that the storage was charged in a short time. Additionally, we investigated a system in which a fixed amount of hydrogen energy was required. For this purpose, we used a validated simulation model for the design concepts of metal hydride storage systems. The model includes all relevant terms and parameters to describe processes inside the system's particular reactions and the thermal conduction due to heat exchangers. We introduce an embedded fuel cell model to calculate the demand for hydrogen for a given power level. The resulting calculations provide the required time for charging or a full charge depending on the tank's diameter and, therefore, the necessary number of tanks. We conclude that the desired hydrogen supply times are given for some of the use cases. Accordingly, the simulated results suggest that using a metal hydride system could be highly practical in forklifts. 相似文献
20.
Umran Elmas Fevzi Bedir Muhammet Kayfeci 《International Journal of Hydrogen Energy》2018,43(23):10741-10754
In this study, hydrogen storage capacity were analyzed by considering hydrogen absorption test rig depending on some reactor design parameters such as metal hydride particle size, having fins at the tank, hydrogen inlet pressure, inlet radius of the tank, coolant temperature, general convective heat transfer coefficient and wall thickness of the tank. In the specified design parameters of the hydrogen storage system we put these in COMSOL Multiphysics 5.1 software to obtain some approaches in the large scale. All parameters were analyzed using three different metal hydrides of the MmNi4,6Al0,4, LaNi4.75Al0.25 and LaNi5. Some parameters like temperature distribution inside the tank, amount of the hydrogen mass to be stored in the tank, the time durations of them and the variations of the equilibrium pressure of the system were optimized. 相似文献