首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examined were the effects of the clamping pressure on the performance of a proton exchange membrane (PEM) fuel cell. The electro-physical properties of the gas diffusion layer (GDL) such as porosity, gas permeability, electrical resistance and thickness were measured using a special-designed test rig under various clamping pressure levels. Correlations for the gas permeability of the GDL were developed in terms of the clamping pressure. In addition, the contact resistance between the GDL and the bipolar (graphite) plate was measured under various clamping pressures. Results showed that at the low clamping pressure levels (e.g. <5 bar) increasing the clamping pressure reduces the interfacial resistance between the bipolar plate and the GDL that enhances the electrochemical performance of a PEM fuel cell. In contrast, at the high clamping pressure levels (e.g. >10 bar), increasing the clamping pressure not only reduces the above Ohmic resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers. Comprising the above two effects did not promote the power density too much but reduce the mass-transfer limitation for high current density.  相似文献   

2.
Air-breathing proton exchange membrane (PEM) fuel cells provide for fully or partially passive operation and have gained much interest in the past decade, as part of the efforts to reduce the system complexity. This paper presents a detailed physics-based numerical analysis of the transport and electrochemical phenomena involved in the operation of a stack consisting of an array of vertically oriented air-breathing fuel cells. A comprehensive two-dimensional, nonisothermal, multi-component numerical model with pressurized hydrogen supply at the anode and natural convection air supply at the cathode is developed and validated with experimental data. Systematic parametric studies are performed to investigate the effects of cell dimensions, inter-cell spacing and the gap between the array and the substrate on the performance of the stack. Temperature and species distributions and flow patterns are presented to elucidate the coupled multiphysics phenomena. The analysis is used to determine optimum stack designs based on constraints on desired performance and overall stack size.  相似文献   

3.
This paper investigates the effects of cathode gases containing chloride ions on the proton exchange membrane fuel cell (PEMFC) performance. Chloride solutions are vaporized using an ultrasonic oscillator and mixed with oxygen/air. The salt concentration of the mixed gas in the cathode is set by varying the concentration of the chloride solution. Five-hour tests show that an increase in the concentration of sodium chloride did not significantly affect the cell performance of the PEMFC. It is found that variations in the concentration of chloride do not show significant influence on the cell performance at low current density operating condition. However, for high current density operating conditions and high calcium chloride concentrations, the chloride ion appears to have a considerable effect on cell performance. Experimental results of 108-h tests indicate that the fuel cell operating with air containing calcium chloride has a performance decay rate of 3.446 mV h−1 under the operating condition of current density at 1 A/cm2. From the measurements of the I-V polarization curves, it appears that the presence of calcium chloride in the cathode fuel gas affects the cell performance more than sodium chloride does.  相似文献   

4.
During the operation of proton exchange membrane fuel cell (PEMFC), it always suffers from reversible performance loss caused by the oxidation of platinum catalyst on its electrode, which reduces the electrochemical active surface area. Short circuit method has been found to improve the performance of fuel cells by stripping of oxides and other adsorbed species from platinum, which needs systematical understanding the effective parameters of short circuit method on fuel cell performance. In this paper, the effects of different short circuit activation parameters (duration, interval, cycles, cut-off voltage, operating current) are carefully studied and analyzed during short circuit operations. In addition, the mechanism revealing how relevant parameters influence short circuit activations is deeply analyzed. The results show that five groups of activation parameters have obvious influence on the activation of fuel cell, indicating that the short-circuit activation effect can be optimized. Among these parameters, the short-circuit duration parameter have the greatest impact on activation, because the platinum hydroxides and oxides is gradually removed during short-circuit duration and results in a larger effective surface area of the platinum catalyst for the electrochemical reaction. However, the smallest impact is short-circuit interval. Another finding is that the five activation parameters are not independent, so the optimal activation parameter value needs to be analyzed in combination with the operating conditions. Finally, according to the activation principle, selection of appropriate short circuit activation parameters for application are proposed to further improve performance and fuel utilization by considering the safety of the stack.  相似文献   

5.
The performance of a fuel cell is subject to uncertainties on its operational and material parameters. Among operational parameters, temperature is one of the most influential factors. This work focuses on this parameter. A statistical analysis is developed on the output voltage of proton exchange membrane fuel cell models. The first model does not include any degradation, whereas the second one introduces a degradation rate on the cell active area. To complete the simulation work, a full factorial design is carried out and a statistical sensitivity analysis (ANOVA) is used to compute the effects and contributions of important parameters of the model on the output voltage.  相似文献   

6.
This study investigates the effects of the relative humidity (RH) of the reactants on the cell performance and local transport phenomena in proton exchange membrane fuel cells with parallel and interdigitated flow fields. A three-dimensional model was developed taking into account the effect of the liquid water formation on the reactant transport. The results indicate that the reactant RH and the flow field design all significantly affect cell performance. For the same operating conditions and reactant RH, the interdigitated design has better cell performance than the parallel design. With a constant anode RH = 100%, for lower operating voltages, a lower cathode RH reduces cathode flooding and improves cell performance, while for higher operating voltages, a higher cathode RH maintains the membrane hydration to give better cell performance. With a constant cathode RH = 100%, for lower operating voltages, a lower anode RH not only provides more hydrogen to the catalyst layer to participate in the electrochemical reaction, but also increases the difference in the water concentrations between the anode and cathode, which enhances back-diffusion of water from the cathode to the anode, thus reducing cathode flooding to give better performance. However, for higher operating voltages, the cell performance is not dependent on the anode RH.  相似文献   

7.
Flooding of catalyst layers is one of the major issues, which effects performance of low temperature proton exchange membrane fuel cells (PEMFC). Rendering catalyst layers hydrophobic one may improve the performance of PEMFC depending on Pt percentage in the catalyst and Polytetrafluoroethylene (PTFE) loading on the electrode. In this study, effect of hydrophobicity in catalyst layers on performance has been investigated by comparing performances of membrane electrode assemblies prepared with 48% Pt/C. Ultrasonic coating technique was used to manufacture highly efficient electrodes. Power density at 0.45 V increased by the addition of PTFE, from 0.95 to 1.01 W/cm2 with H2/O2 feed; while it slightly increased from 0.52 W/cm2 to 0.53 W/cm2 with H2/Air feed. Addition of PTFE to catalyst layers while keeping Pt loading constant, enhanced performance providing improved water management. Kinetic activity increased by decreasing Nafion loading from 0.37 mg/cm2 to 0.25 mg/cm2 while introducing PTFE (0.12 mg/cm2) to the electrode. Electrochemical impedance spectroscopy (EIS) results proved that charge transfer resistance decreased with hydrophobic catalyst layers for H2/O2 feed. This is attributed to enhanced water management due to PTFE presence.  相似文献   

8.
In this article, a novel mathematical approach is proposed to determine the minimal proton exchange membrane fuel cell efficiency below which it is not recommended to operate the fuel cell. The objective of this proposal is to minimize the annual fuel cost and the electricity cost of a proton exchange membrane (PEM) fuel cell since both terms are efficiency dependent. A new concept developed in this article might be used as a valuable mathematical tool to determine the minimal efficiency required to operate a fuel cell in a reasonable fashion in order to make the fuel cell system technically and economically feasible. Two dimensionless mathematical criteria J1 and J2 were proposed for the annual fuel cost and electricity cost, respectively. A minimum fuel cell efficiency of was obtained with J1 and J2 values of 2.7 and 0.026, respectively.  相似文献   

9.
In this work, proton exchange membrane fuel cell cathodes are degraded with accelerated-stress-tests.These PtCo containing cathodes are analyzed at begin-of-life and end-of-test with a dedicated diagnostic procedure. For every individual load point, the oxygen transport resistance and voltage losses due to the formation of platinum oxides were obtained in addition to commonly measured electrochemical surface area, high frequency resistance, as well as cathode ionomer resistance. These data were used to break down the voltage losses into six different contributors. With this break down, performance gains and performance losses were determined at end-of-test. At low current densities, it was found that voltage losses due to degradation are dominated by the loss of specific activity and catalyst surface area - in line with the state-of-the-art knowledge. But by quantifying the losses from platinum oxide formation explicitly, we show that end-of-test an unassigned voltage loss is not only present at highest current densities, but already at low current density. More precisely, the unassigned voltage loss shows a linear increase with decreasing half cell voltage and is independent from the chosen accelerated stress test. As this unassigned loss depends on half cell voltage, it might arise from ionomer adsorption.  相似文献   

10.
The gas diffusion layer (GDL) covered with a microporous layer (MPL) is being widely used in proton exchange membrane fuel cells (PEMFCs). However, the effect of MPL on water transport is not so clear as yet; hence, many studies are still being carried out. In this study, the effect of MPL on the performance degradation of PEMFCs is investigated in repetitive freezing conditions. Two kinds of GDL differentiated by the existence of MPL are used in this experiment. Damage on the catalyst layer due to freezing takes place earlier when GDL with MPL is used. More water in the membrane and catalyst layer captured by MPL causes permanent damage on the catalyst layer faster. More detailed information about the degradation is obtained by electrochemical impedance spectroscopy (EIS). From the point of view that MPL reduces the ohmic resistance, it is effective until 40 freezing cycles, but has no more effect thereafter. On the other hand, from the point of view that MPL enhances mass transport, it delays the increase in the mass transport resistance.  相似文献   

11.
The operating principles of polymer electrolyte membrane (PEM) fuel cells system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is not always easy to establish a mathematical model. In this paper two different methods to model a commercial PEM fuel cell stack are discussed and compared. The models presented are nonlinear, derived from a black-box approach based on a set of measurable exogenous inputs and are able to predict the output voltage and cathode temperature of a 5 kW module working at the CNR-ITAE. A PEM fuel cell stack fed with H2 rich gas is employed to experimentally investigate the dynamic behaviour and to reveal the most influential factors. The performance obtained using a classical Neural Networks (NNs) model are compared with a number of stacking strategies. The results show that both strategies are capable of simulating the effects of different stoichiometric ratio in the output variables under different working conditions.  相似文献   

12.
13.
Small fuel cells have shown excellent potential as alternative energy sources for portable applications. One of the most promising fuel cell technologies for portable applications is air-breathing fuel cells. In this paper, a dynamic model of an air-breathing PEM fuel cell (AB-PEMFC) system is presented. The analytical modeling and simulation of the air-breathing PEM fuel cell system are verified using Matlab, Simulink and SimPowerSystems Blockset. To show the effectiveness of the proposed AB-PEMFC model, two case studies are carried out using the Matlab software package. In the first case study, the dynamic behavior of the proposed AB-PEMFC system is compared with that of a planar air-breathing PEM fuel cell model. In the second case study, the validation of the air-breathing PEM fuel cell-based power source is carried out for the portable application. Test results show that the proposed AB-PEMFC system can be considered as a viable alternative energy sources for portable applications.  相似文献   

14.
A hybrid neural network model for PEM fuel cells   总被引:5,自引:0,他引:5  
The goal of this paper is to discuss a neural network modeling approach for developing a quantitatively good model for proton exchange membrane (PEM) fuel cells. Various ANN approaches have been tested; the back-propagation feed-forward networks and radial basis function networks show satisfactory performance with regard to cell voltage prediction. The effects of Pt loading on the performance of the PEM fuel cell have been specifically studied. The results show that the ANN model is capable of simulating these effects for which there are currently no valid fundamental models available from the open literature.

Two novel hybrid neural network models (multiplicative and additive), each consisting of an ANN component and a physical component, have been developed and compared with the full-blown ANN model. The results from the hybrid models demonstrate comparable performance (in terms of cell voltage predictions) compared to the ANN model. Additionally, the hybrid models show performance gains over the physical model alone. The additive hybrid model shows better accuracy than that of the multiplicative hybrid model in our tests.  相似文献   


15.
A serpentine flow field with outlet channels having modified heights or lengths was designed to improve reactant utilization and liquid water removal in proton exchange membrane (PEM) fuel cells. A three-dimensional full-cell model was developed to analyze the effects of the contraction ratios of height and length on the cell performance. Liquid water formation, that influences the transport phenomena and cell performance, was included in the model. The predictions show that the reductions of the outlet channel flow areas increase the reactant velocities in these regions, which enhance reactant transport, reactant utilization and liquid water removal; therefore, the cell performance is improved compared with the conventional serpentine flow field. The predictions also show that the cell performance is improved by increments in the length of the reduced flow area, besides greater decrements in the outlet flow area. If the power losses due to pressure drops are not considered, the cell performance with the contracted outlet channel flow areas continues to improve as the outlet flow areas are reduced and the lengths of the reduced flow areas are increased. When the pressure losses are also taken into account, the optimal performance is obtained at a height contraction ratio of 0.4 and a length contraction ratio of 0.4 in the present design.  相似文献   

16.
This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. A cathode with carbon-supported Pt catalyst was prepared and characterized during potential hold at 1.2 V vs. SHE in a PEM fuel cell. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode during potential hold were determined using its capacitive responses. Concentration losses in the PEM fuel cell were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.  相似文献   

17.
This study presents a novel structure of catalyst layers of membrane electrode assemblies (MEAs) by adding graphene to platinum on carbon black (Pt/C) to improve the durability at high current density operation (3 A cm−2). Graphene displays outstanding low electrical resistance and has the advantage of high electron mobility. It is also used in lithium ion batteries to improve electrical performance such as high rate charge/discharge capability and cycle-life stability. In this study, three MEAs are compared, and graphene is used as an excellent conductive additive in catalyst layers for better electrons transport at high current density operation. The MEA coated Pt/C mixed with 0.1 wt% graphene shows best durability for 0.3 V h−1 which is almost 3.7 times better than that of without graphene additive (1.1 V h−1). The graphene additive effectively extends the durability of the MEA. Furthermore, the MEAs are analyzed by AC impedance. The impedance arc of the MEA coated with Pt/C only is getting worse, but those two coated with graphene show similar and smaller impedance arcs after high current density operation for 80 h.  相似文献   

18.
The state-of-art understanding of durability issues (the degradation reasons and mechanisms, the influence of working conditions, etc.) of Pt-based catalysts for proton exchange membrane fuel cell (PEMFC) and the approaches for improving and studying catalyst durability are reviewed. Both carbon support and catalytic metals degrade under PEMFC conditions, respectively, through the oxidation of carbon and the agglomerate and the detachment from support materials of catalytic metals, especially under unnormal working conditions; furthermore, the degradation of carbon support and catalytic metals interact with and exacerbate one another. The working temperature, humidity, cell voltage (the electrode potential and the mode applied on the electrode), etc. can influence the catalyst durability. Carbons with high graphitization degree as support materials and alloying Pt with some other metals are proved to be effective ways to improve the catalyst durability. Time-effective and reliable methods for studying catalyst durability are indispensable for developing PEMFC catalysts.  相似文献   

19.
Conventional bipolar plates for proton exchange membrane (PEM) fuel cells use extra rubber gaskets to seal the stack, which require an additional curing process at high temperature and increase the manufacturing and assembling time. To reduce the assembling time of fuel cell stacks and achieve gas sealability without using extra gaskets or curing cycles, innovative gasketless carbon composite bipolar plates were developed. To ease the assembling of the cell stacks, special grooves on the edge of the composite bipolar plate are provided for mechanical joining and the behavior of the bipolar plates under the stack compaction pressure conditions was investigated by FE analysis. The mechanical properties of the grooves were measured by the compressive strength test and compared with the FE analysis results. The sealability of the gasketless bipolar plate with grooves was tested to verify the integrity of the design.  相似文献   

20.
In this study, in order to increase the electrical conductivity, a carbon composite-metal hybrid bipolar plate has been developed using pre-forming method followed by a plasma surface treatment. A pre-formed metal foil between the carbon fiber/polymer composite plates promotes the metal foil to follow the shape of the channels of the bipolar plates without tearing and permits a continuous flow of electrons. The pre-formed metal foil also reduces the residual stress between the composite and metal foils, which helps prevent delamination between the composite and metal foils. The composite surface has been treated with plasma to increase the contact area between the carbon fiber and the gas diffusion layer (GDL). The composite-metal hybrid bipolar plates have only 1.4% of the total electrical resistance of that of the conventional composite bipolar plates. Unit cell test results have proved that the developed composite-metal hybrid bipolar plates with reduced total electrical resistance increase the cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号