首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03–0.53 MJeq/MJ emitting 0.7–27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.  相似文献   

2.
Ethanol from sugarcane is mainly used as fuel for cars in Brazil. However, the chemical industry is considering ethanol also as biotic feedstock for several plastics (e.g. polyethylene and polyvinyl chloride). Both uses are able to cause less environmental impacts than their fossil references if we look to certain specific environmental impact categories such as fossil energy consumption and greenhouse gas (GHG) emissions. However, which use would be able to bring the most environmental gains to society? In order to answer this question, we performed an attributional life cycle assessment of using 1 kg of hydrous ethanol as fuel for transportation and the same amount for monomer production (ethylene), and compared them with the common practice of today in Brazil. Using ethanol to produce ethylene (instead of fossil-based ethylene) would generate environmental gains in the order of 32.0 MJ of fossil energy and 1.87 kg CO2eq, whereas the use of ethanol for transportation (instead of gasoline mixture, for flex-fuel cars) would generate environmental gains in the order of 27.2 MJ of fossil energy and 1.82 kg CO2eq. Some uncertainties were quantified, for instance we could observe that when the ethanol-to-ethylene reaction yield was lower than 96%, the fuel route had better results for GHG emission savings.  相似文献   

3.
Hydrogen energy utilization is expected due to its environmental and energy efficiencies. However, many issues remain to be solved in the social implementation of hydrogen energy through water electrolysis. This analyzes and compares the energy consumption and GHG emissions of fossil fuel-derived hydrogen and gasoline energy systems over their entire life cycle. The results demonstrate that for similar vehicle weights, the hydrogen energy system consumes 1.8 MJ/km less energy and emits 0.15 kg-CO 2 eq./km fewer GHG emissions than those of the gasoline energy system. Hydrogen derived from fossil fuels may contribute to future energy systems due to its stable energy supply and economic efficiency. Lowering the power source carbon content also improved the environmental and energy efficiencies of hydrogen energy derived from fossil fuels.  相似文献   

4.
In this study, a Life Cycle Assessment (LCA) of biomass-based hydrogen production is performed for a period from biomass production to the use of the produced hydrogen in Proton Exchange Membrane (PEM) fuel cell vehicles. The system considered is divided into three subsections as pre-treatment of biomass, hydrogen production plant and usage of hydrogen produced. Two different gasification systems, a Downdraft Gasifier (DG) and a Circulating Fluidized Bed Gasifier (CFBG), are considered and analyzed for hydrogen production using actual data taken from the literature. Fossil energy consumption rate and Green House Gas Emissions (GHG) are defined and indicated first. Next, the LCA results of DG and CFBG systems are compared for 1 MJ/s hydrogen production to compare with each other as well as with other hydrogen production systems. While the fossil energy consumption rate and emissions are calculated as 0.088 MJ/s and 6.27 CO2 eqv. g/s in the DG system, they are 0.175 MJ/s and 17.13 CO2 eqv. g/s in the CFBG system, respectively. The Coefficient of Hydrogen Production Performance (CHPP) (newly defined as a ratio of energy content of hydrogen produced from the system to the total energy content of fossil fuels used) of the CFBG and DG systems are then determined to be 5.71 and 11.36, respectively. Thus, the effects of some parameters, such as energy efficiency, ratio of cost of hydrogen, on natural gas and capital investments efficiency are investigated. Finally, the costs of GHG emissions reduction are calculated to be 0.0172 and 0.24 $/g for the DG and CFBG systems, respectively.  相似文献   

5.
Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses.  相似文献   

6.
The controversial and highly emotional discussion about biofuels in recent years has shown that greenhouse gas2 (GHG) emissions can only be evaluated in an acceptable way by carrying out a full life cycle assessment (LCA) taking the overall life cycle including all necessary pre-chains into consideration. Against this background, the goal of this paper is it to analyse the overall life cycle of a hydrogen production and provision. A state of the art hydrogen refuelling station in Hamburg/Germany opened in February 2012 is therefore taken into consideration. Here at least 50% hydrogen from renewable sources of energy is produced on-site by water electrolysis based on surplus electricity from wind (mainly offshore wind parks) and water. The remaining other 50% of hydrogen to be sold by this station mainly to hydrogen-fuelled buses is provided by trucks from a large-scale production plant where hydrogen is produced from methane or glycerol as a by-product of the biodiesel production. These two pathways are compared within the following explanations with hydrogen production from biomass and from coal. The results show that – with the goal of reducing GHG emissions on a life cycle perspective – hydrogen production based on a water electrolysis fed by electricity from the German electricity mix should be avoided. Steam methane reforming is more promising in terms of GHG reduction but it is still based on a finite fossil fuel. For a climatic sound provision of hydrogen as a fuel electricity from renewable sources of energy like wind or biomass should be used.  相似文献   

7.
The main objective of this research is to analyze the impact of the market share increase of hydrogen based road vehicles in terms of energy consumption and CO2, on today's Portuguese light-duty fleet. Actual yearly values of energy consumption and emissions were estimated using COPERT software: 167112 TJ of fossil fuel energy, 12213 kton of CO2 emission and 141 kton of CO, 20 kton of HC, 46 kton of NOx and 3 kton of PM. These values represent 20–40% of countries total emissions. Additionally to base fleet, three scenarios of introduction of 10–30% fuel cell vehicles including plug-in hybrids configurations were analysed. Considering the scenarios of increasing hydrogen based vehicles penetration, up to 10% life cycle energy consumption reduction can be obtained if hydrogen from centralized natural gas reforming is considered. Full life cycle CO2 emissions can also be reduced up to 20% in these scenarios, while local pollutants reach up to 85% reductions. For the purpose of estimating road vehicle technologies energy consumption and CO2 emissions in a full life cycle perspective, fuel cell, conventional full hybrids and hybrid plug-in technologies were considered with diesel, gasoline, hydrogen and biofuel blends. Energy consumption values were estimated in a real road driving cycle and with ADVISOR software. Materials cradle-to-grave life cycle was estimated using GREET database adapted to Europe electric mix. The main conclusions on CO2 full life cycle analysis is that light-duty vehicles using fuel cell propulsion technology are highly dependent on hydrogen production pathway. The worst scenario for the current Portuguese and European electric mix is hydrogen produced from on-site electrolysis (in the refuelling stations). In this case full life cycle CO2 is 270 g/km against 190 g/km for conventional Diesel vehicle, for a typical 150,000 km useful life.  相似文献   

8.
In this paper, a comprehensive study on corn‐based ethanol in a Canadian context is conducted, which uses the most reliable and up to date data, considers realistic assumptions, and applies sound methodology to provide a basis for developing future scenarios for corn‐based ethanol and compared the results with the conventional fuel, such as gasoline. It is estimated that the net energy value (NEV), defined as the energy content of a liter of ethanol minus the total energy use to produce a liter of ethanol, is 9.6 MJ L?1 (LHV), when co‐products energy credits are not considered. In addition, a comparison of life cycle energy use for corn‐based ethanol and gasoline reveals that the life cycle energy use to produce a liter of ethanol is considerably less than the life cycle energy use to produce a liter of gasoline. Furthermore, a comparison of life cycle greenhouse gas (GHG) emissions for corn‐based ethanol and gasoline reveals that the life cycle GHG emissions released per liter of ethanol produced is an order of magnitude lesser than the life cycle GHG emissions released per liter of gasoline produced, when GHG emissions displaced by ethanol co‐products are considered in the estimation. Finally, a comparison of our results in terms of net fossil fuel input, net fossil fuel ratio and GHG emissions is carried out with the results obtained from the ERG biofuel analysis meta‐model (EBAMM) to reflect both Canadian and US perspectives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We compare energy use and greenhouse gas (GHG) emissions associated with total household expenditures and activities in Canada and US in 1997, the first detailed estimate of environmental burdens for Canadian households. We estimate direct burdens from published government data and indirect burdens using an industry-by-commodity, bi-national economic input–output life cycle assessment model developed in this study. Comparing 30 expenditure and two activity categories, per capita US household expenditures were 70% higher, while per capita household energy use and GHG emissions were only 10% and 44% higher, respectively. Energy use/dollar of expenditure was higher in most Canadian categories, while the average ratio of GHG emissions/energy use was higher in the US (65 vs 50 kg Eq. CO2/GJ) due largely to a higher proportion of electricity from nonrenewable sources. Indirect environmental burdens represented 63–69% of total burdens and 62–70% of total burdens were associated with household operation and transportation. Key drivers of differences between energy profiles were: higher per capita electricity use by Canadian households, and higher US household private health care expenditures and motor fuel use. Energy-intensive production for export represented a higher proportion of Canadian production, resulting in less agreement between consumption and production-based analyses for Canada than US.  相似文献   

10.
Exergetic life cycle assessment (ExLCA) is applied with life cycle assessment (LCA) to a hydrogen production process. This comparative environmental study examines a nuclear-based hydrogen production via thermochemical water splitting using a copper–chlorine cycle. LCA, which is an analytical tool to identify, quantify and decrease the overall environmental impact of a system or a product, is extended to ExLCA. Exergy efficiencies and air pollution emissions are evaluated for all process steps, including the uranium processing, nuclear and hydrogen production plants. LCA results are presented in four categories: acidification potential, eutrophication potential, global warming potential and ozone depletion potential. A parametric study is performed for various plant lifetimes. The ExLCA results indicate that the greatest irreversibility is caused by uranium processing. The primary contributor of the life cycle irreversibility of the nuclear-based hydrogen production process is fuel (uranium) processing, for which the exergy efficiency is 26.7% and the exergy destruction is 2916.3 MJ. The lowest global warming potential per megajoule exergy of hydrogen is 5.65 g CO2-eq achieved a plant capacity of 125,000 kg H2/day. The corresponding value for a plant capacity of 62,500 kg H2/day is 5.75 g CO2-eq.  相似文献   

11.
This paper analyses the energy consumption and CO2 emissions of biological hydrogen production from sugarcane and potato peels using life cycle assessment methodology for the Portuguese scenario. Potato peels are assumed to be produced locally from Portuguese potato cultivation. Sugarcane is assumed to be imported from Brazil and fermented in Portugal. The uncertainty is quantified by a Monte Carlo approach. Biohydrogen was compared with natural gas reforming, electrolysis and other energy resources such as diesel and electricity. Between bioH2 feedstocks, sugarcane stands out with the lowest values for energy consumption and CO2 emissions with 0.30–0.34 MJ of consumed energy and 24–31 g of CO2 emitted per 1 MJ of H2 produced. However these results do not have a major contribution to the Portuguese energy independency problem. On the other hand potato peels feedstocks are more attractive, presenting values of 0.49–0.61 MJ/MJH2 and 60-77 gCO2/MJH2. According to Portuguese production capabilities, it is estimated that biohydrogen will be able to supply 3100 vehicles of a typical Portuguese urban taxi fleet or up to 1.4 million passenger cars with a daily commuting distance of 30 km.  相似文献   

12.
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO2e/GJethanol. This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO2e/GJethanol) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJethanol/GJfossil.  相似文献   

13.
Malaysia's transportation sector accounts for 41% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This paper addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse-gas emissions from land-use change. When converting primary and secondary forests to oil-palm plantations between 270–530 and 120–190 g CO2-equivalent per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 and 85 g CO2-equivalent per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. These findings are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector.  相似文献   

14.
Developing underground coal gasification (UCG)-based hydrogen production (UCG-H2) is expected to alleviate hydrogen supply and demand contradiction, but its energy consumption and environmental impact need to be clarified. In this paper, comparative study of energy consumption and greenhouse gas (GHG) emissions between UCG-H2 and typical surface coal gasification (SCG)-based hydrogen production (SCG-H2) is carried out using life cycle assessment method. Result shows energy consumption of UCG-H2 is only 61.2% of that of SCG-H2, which is 1,327,261 and 2,170,263 MJ respectively, reflecting its obvious energy saving advantage. 80% capture rate can achieve an appropriate balance between energy consumption and emissions. Under this capture rate, emissions of UCG-H2 and SCG-H2 are roughly equivalent, which are 207,582 and 197,419 kg CO2-eq respectively. Scenario analysis indicates energy consumption in hydrogen industry can reduce by 38.8% when hydrogen production is substituted by UCG with CCS to fully meet demand of 21 Mt in 2030.  相似文献   

15.
Policies formulated to reduce greenhouse gas (GHG) emissions, such as a low-carbon fuel standard, frequently rely on life-cycle assessment (LCA) to estimate emissions, but LCA results are often highly uncertain. This study develops life-cycle models that quantitatively and qualitatively describe the uncertainty and variability in GHG emissions for both fossil fuels and ethanol and examines mechanisms to reduce those uncertainties in the policy process. Uncertainty regarding emissions from gasoline is non-negligible, with an estimated 90% confidence interval ranging from 84 to 100 g CO2e/MJ. Emissions from biofuels have greater uncertainty. The widths of the 90% confidence intervals for corn and switchgrass ethanol are estimated to be on the order of 100 g CO2e/MJ, and removing emissions from indirect land use change still leaves significant remaining uncertainty. Though an opt-in policy mechanism can reduce some uncertainty by incentivizing producers to self-report fuel production parameters, some important parameters, such as land use change emissions and nitrogen volatilization, cannot be accurately measured and self-reported. Low-carbon fuel policies should explicitly acknowledge, quantify, and incorporate uncertainty in life cycle emissions in order to more effectively achieve emissions reductions. Two complementary ways to incorporate this uncertainty in low carbon fuel policy design are presented.  相似文献   

16.
In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.  相似文献   

17.
The environmental profile of hydrogen depends greatly on the nature of the feedstock and the production process. In this Well-to-Wheels (WTW) study, the environmental impacts of hydrogen production from lignocellulosic biomass via pyrolysis and subsequent steam reforming of bio-oil were evaluated and compared to the conventional production of hydrogen from natural gas steam reforming. Hydrogen was assumed to be used as transportation fuel in an internal combustion engine vehicle. Two scenarios for the provision of lignocellulosic biomass were considered: wood waste and dedicated willow cultivation. The WTW analysis showed that the production of bio-hydrogen consumes less fossil energy in the total lifecycle, mainly due to the renewable nature of the fuel that results in zero energy consumption in the combustion step. The total (fossil and renewable) energy demand is however higher compared to fossil hydrogen, due to the higher process energy demands and methanol used to stabilize bio-oil. Improvements could occur if these are sourced from renewable energy sources. The overall benefit of using a CO2 neutral renewable feedstock for the production of hydrogen is unquestionable. In terms of global warming, production of hydrogen from biomass through pyrolysis and reforming results in major GHG emissions, ranging from 40% to 50%, depending on the biomass source. The use of cultivated biomass aggravates the GHG emissions balance, mainly due to the N2O emissions at the cultivation step.  相似文献   

18.
The main objective of the present study is the integration of hydrogen technologies as an energy storage medium in a hybrid power system. The existing power system of the island of Milos, which is based on fossil fuel generators and a small wind park, is assessed in the context of this paper. System level simulation results, from both technical and economic point of view, are presented for the currently existing and the proposed island's hybrid power system. The latter integrates a higher number of wind turbines and hydrogen technologies as energy storage medium, and the two system architectures are being compared taking into account not only technical and economic parameters but also Green House – Gas (GHG) emissions, fossil fuels consumption and Renewable Energy Sources (RES) penetration increase. Moreover, a sensitivity analysis has been performed in order to determine the contribution of hydrogen technologies equipment costs; with the cost of energy produced (COE) being the critical parameter. Results show that COE for the proposed power system is higher than the existing one, but on the other hand GHG emissions and fossil fuel consumption are significantly reduced. In addition, RES penetration increases dramatically and the sensitivity analysis indicates that a further reduction in hydrogen technologies equipment and subsidy on wind turbine costs would make RES & Hydrogen-based systems economically competitive to the existing power system of the island.  相似文献   

19.
Alternative hydrogen production technologies are sought in part to reduce the greenhouse gas (GHG) emissions intensity compared with Steam Methane Reforming (SMR), currently the most commonly employed hydrogen production technology globally. This study investigates hydrogen production via High Temperature Steam Electrolysis (HTSE) in terms of GHG emissions and cost of hydrogen production using a combination of Aspen HYSYS® modelling and life cycle assessment. Results show that HTSE yields life cycle GHG emissions from 3 to 20 kg CO2e/kg H2 and costs from $2.5 to 5/kg H2, depending on the system parameters (e.g., energy source). A carbon price of $360/tonne CO2e is estimated to be required to make HTSE economically competitive with SMR. This is estimated to potentially decrease to $50/tonne CO2e with future technology advancements (e.g., fuel cell lifetime). The study offers insights for technology developers seeking to improve HTSE, and policy makers for decisions such as considering support for development of hydrogen production technologies.  相似文献   

20.
This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper–chlorine (Cu–Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur–iodine (S–I) thermochemical cycle. Also, an integrated Cu–Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu–Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号