共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanesa M. García Maria Serra Jordi Llorca Jordi Riera 《International Journal of Hydrogen Energy》2013
This paper focuses on the design of a controller for a low temperature ethanol steam reformer for the production of hydrogen to feed a protonic exchange membrane (PEM) fuel cell. It describes different control structures for the reformer and treats the control structure selection of this multiple input multiple output (MIMO) system. For each considered control structure, decentralised 2 × 2 controllers with proportional integral (PI) control actions in each control loop are implemented. The tuning of the PI parameters and the performance evaluation of the different controllers are based on a non-linear simulation model. For the validation and comparison of the considered controllers, the dynamic response for different setpoint changes and initial conditions is analysed, as well as the behaviour of the controlled system against disturbances. 相似文献
2.
Celso Eduardo Tuna José Luz Silveira Márcio Evaristo da Silva Ronney Mancebo Boloy Lúcia Bolini Braga Nestor Proenza Pérez 《International Journal of Hydrogen Energy》2018,43(4):2108-2120
This work aims to investigate a biogas steam reforming prototype performance for hydrogen production by mass spectrometry and gas chromatography analyses of catalysts and products of the reform. It was found that 7.4% Ni/NiAl2O4/γ-Al2O3 with aluminate layer and 3.1% Ru/γ-Al2O3 were effective as catalysts, given that they showed high CH4 conversion, CO and H2 selectivity, resistance to carbon deposition, and low activity loss. The effect of CH4:CO2 ratio revealed that both catalysts have the same behavior. An increase in CO2 concentration resulted in a decrease in H2/CO ratio from 2.9 to 2.4 for the Ni catalyst at 850 °C, and from 3 to 2.4 for the Ru catalyst at 700 °C. In conclusion, optimal performance has been achieved in a CH4:CO2 ratio of 1.5:1. H2 yield was 60% for both catalysts at their respective operating temperature. Prototype dimensions and catalysts preparation and characterization are also presented. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(58):24610-24618
Hydrocalumite derived catalysts prepared by co-precipitation with non-noble metal Nickel(Ni) as main active site were tested in ethanol steam reforming, and the influences of Ni (5,10,15 wt%) content were mainly tested in this research. Meanwhile, the physicochemical properties of the prepared catalysts were analyzed through different characterizations including BET, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR) and CO2-temperature programmed desorption (TPD). As the Ni increased, the specific surface area, crystallite size of Ni, reducibility and basicity of catalysts were changed, which further affected their activities. On this basis, the best performance in this catalytic system was presented when Ni in the catalysts was 15 wt%, the ethanol conversion and hydrogen yield could reach almost 100% and 85% at 650 °C respectively. Thus, this kind of catalyst is effective for ethanol steam reforming. 相似文献
4.
Kantilal Chouhan Shishir Sinha Shashi Kumar Surendra Kumar 《International Journal of Hydrogen Energy》2021,46(53):26809-26824
The paper aims to investigate the steam reforming of biogas in an industrial-scale reformer for hydrogen production. A non-isothermal one dimensional reactor model has been constituted by using mass, momentum and energy balances. The model equations have been solved using MATLAB software. The developed model has been validated with the available modeling studies on industrial steam reforming of methane as well as with the those on lab-scale steam reforming of biogas. It demonstrates excellent agreement with them. Effect of change in biogas compositions on the performance of industrial steam reformer has been investigated in terms of methane conversion, yields of hydrogen and carbon monoxide, product gas compositions, reactor temperature and total pressure. For this, compositions of biogas (CH4/CO2 = 40/60 to 80/20), S/C ratio, reformer feed temperature and heat flux have been varied. Preferable feed conditions to the reformer are total molar feed rate of 21 kmol/h, steam to methane ratio of 4.0, temperature of 973 K and pressure of 25 bar. Under these conditions, industrial reformer fed with biogas, provides methane conversion (93.08–85.65%) and hydrogen yield (1.02–2.28), that are close to thermodynamic equilibrium condition. 相似文献
5.
6.
In this paper we have first reviewed operations of a hydrogen gas reformer and provided its linearized mathematical model. Then, we have simplified an existing algorithm for a two-stage design of feedback controllers for linear continuous-time time-invariant systems. The proposed design significantly reduces the computational requirements and provides flexibility of designing different type of controllers for different dynamic parts of the system. Since the hydrogen gas reformer (also known as a fuel processing system) possesses slow and fast modes (state variables), the newly proposed design is further simplified and specialized for this class of systems. The obtained algorithm is efficiently applied with very high accuracy to the hydrogen gas reformer. As a matter of fact, the eigenvalue placement problem is solved for the reformer dynamics for both slow and fast modes. The design is so flexible that combined hybrid controllers (optimal, robust, set-point, eigenvalue assignment controllers or any other linear controller) can be designed independently for particular subsystems of the hydrogen gas reformer. The hybrid linear feedback controller design for the hydrogen gas reformer that optimizes its slow subsystem and assigns the desired eigenvalues to its fast subsystem is also presented in the paper. 相似文献
7.
Gabriella Garbarino Paola Riani Mattia Alberto Lucchini Fabio Canepa Shrikant Kawale Guido Busca 《International Journal of Hydrogen Energy》2013
Results obtained in the synthesis, characterization and application as catalyst of cobalt nanoparticles are reported. Cobalt nanoparticles were prepared via reduction method in aqueous solution. Structural characterization was carried out using X-ray diffraction (XRD), morphological studies were performed with a scanning electron microscope equipped with a field emission gun (FE-SEM). A DC-superconducting quantum interference device “SQUID” magnetometer was used to measure the room temperature (RT) magnetic hysteresis cycle in the −5 ÷ 5 Tesla (T) μ0H magnetic field range as well as magnetization as a function of temperature. This material is constituted by very small primary particles (∼2.8 nm radius) which appear amorphous to XRD and have a superparamagnetic behaviour. However, annealing at 773 K and also utilization in the catalytic reactor at the same temperature result in XRD detectable cubic Co nanocrystals. These unsupported cobalt nanoparticles were found catalytically active in the ethanol steam reforming reaction, producing hydrogen with 90% yield at 773 K. These nanoparticles show a better catalytic behaviour compared to those of more conventional Co and Ni based catalysts, due to very low CO and methane production, and with moderate formation of carbonaceous materials. 相似文献
8.
《International Journal of Hydrogen Energy》2021,46(58):29795-29811
Methanol steam reforming (MSR) has been considered as a promising method for producing pure hydrogen in recent decades. A comprehensive two-dimensional steady-state mathematical model was developed to analyze the MSR reactor. To improving high purity hydrogen production, a triple-objective optimization of the MSR reactor is performed. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is employed as a robust optimization approach to maximize the three objectives, termed as, methanol conversion, CO selectivity, and H2 selectivity. The Pareto optimal frontier has also been provided and the ultimate solution of the Pareto front has been found by the three decision-making methods (TOPSIS, LINMAP, and Shannon's Entropy). Among the three distinct decision-making approaches, LINMAP presents better results according to the deviation index parameter. It has been shown that a perfect agreement is available between the plant and simulation data. Operating under the optimum values based on the LINMAP method confirms an almost 47.04% enhancement of H2 mass fraction compared to the conventional industrial MSR reactor. The predicted results advocate that the key superiority of the optimized-industrial reactor is the remarkable higher production rate of hydrogen compared to the conventional MSR reactor which makes optimized-industrial reactor both feasible and beneficial. 相似文献
9.
Chang-Yeol Yu Dong-Wook Lee Sang-Jun Park Kwan-Young Lee Kew-Ho Lee 《International Journal of Hydrogen Energy》2009
Ethanol steam reforming in a membrane reactor with catalytic membranes was investigated to achieve important aims in one process, such as improvement in ethanol conversion and hydrogen yield, high hydrogen recovery and CO reduction. In order to confirm the efficiency of reaction and CO reduction, an ethanol reforming-catalytic membrane reactor with water–gas shift reaction (ECRW) in the permeate side was compared with a conventional reactor (CR) and an ethanol reforming-catalytic membrane reactor (ECR). In comparison with the CR, ethanol conversion improvement of 11.9–19% and high hydrogen recovery of 78–87% were observed in the temperature range of 300–600 °C in the ECRW. Compared with CR and ECR, the hydrogen yield of ECRW increased up to 38% and 30%, respectively. Particularly, the ECRW showed higher hydrogen yield at high temperature, because Pt/Degussa P25 loaded in the permeate side showed catalytic activity for the methane steam reforming as well as WGS reaction. Moreover, CO concentration was reduced under 1% by the WGS reaction in the permeate side in the temperature range of 300–500 °C. 相似文献
10.
Sufang He Zhanqiang Mei Nengsheng Liu Lei Zhang Jichang Lu Xiaofeng Li Jing Wang Dedong He Yongming Luo 《International Journal of Hydrogen Energy》2017,42(21):14429-14438
The effect of nickel precursor on Ni/SBA-15 catalysts was studied in ethanol steam reforming (ESR) for hydrogen production. These catalysts were prepared via incipient-wetness impregnation method using nickel nitrate and nickel citrate precursors, respectively (denoted as Ni/SBA-15(N) and Ni/SBA-15(C), respectively), and characterized by various techniques including H2-TPR, XRD, TEM and TG. It was found that the use of nickel citrate precursor, compared to nickel nitrate precursor, could greatly strengthen the NiO-support interaction and promote the homogeneous distribution of nickel species, to obtain the small nickel particles with high dispersion. After a 25 h time-on-stream test, much lower coke deposition was formed over Ni/SBA-15(C) than Ni/SBA-15(N). Moreover, NiCx species had be found over the used Ni/SBA-15(C), in which the carbon could be removed easily at lower temperature to exposure the active Ni sites; While carbon nanofibers with regular graphite-structure were the primary coke species over the spent Ni/SBA-15(N), which was difficultly remove and thus covered the active Ni sites easily. Due to these, Ni/SBA-15(C) displayed the higher catalytic activities and better stabilities in ESR than Ni/SBA-15(N). In summary, nickel citrate is an excellent precursor for the preparation of Ni/SBA-15 catalysts with high dispersion and strong interaction. 相似文献
11.
Vanesa M. García Eduardo López Maria Serra Jordi Llorca Jordi Riera 《International Journal of Hydrogen Energy》2010
This work presents a controllability analysis of a low temperature ethanol reformer based on a cobalt catalyst for fuel cell application. The study is based on a non-linear dynamic model of a reformer which operates in three separate stages: ethanol dehydrogenation to acetaldehyde and hydrogen, acetaldehyde steam reforming, and water–gas-shift reaction. The controllability analysis is focused on the rapid dynamics due to mass balances and is based on a linearization of the complex non-linear model of the reformer. RGA, CN and MRI analysis tools are applied to the linear model suggesting that a good performance can be obtained with decentralized control for frequencies up to 0.1 rad s−1. 相似文献
12.
Seyyed Mohammad Jokar Payam Parvasi Angelo Basile 《International Journal of Hydrogen Energy》2018,43(32):15321-15329
In this work, the performance of an industrial dense PdAg membrane reformer for hydrogen production with methane mixed reforming reaction was evaluated. The rate parameters of mixed reforming reaction on a Ni based catalyst optimized by using the experimental results. One-dimensional models have been considered to model the steam reforming industrial membrane reformer (SRIMR) and mixed reforming industrial membrane reformer (MRIMR). The models are validated by experimental data.The proficiency of MRIMR and SRIMR at similar conditions used as a basis of comparison in terms of temperature, methane conversion, hydrogen yield, syngas production rate and CO2 flow rate. Results revealed that the methane conversion, hydrogen yield and syngas production rate in MRIMR is considerably higher than SRIMR. Furthermore, the operation temperature of MRIMR could be 195 °C lower than that for SRIMR. This would contribute to a major decrease in process costs as well as a reduction in catalyst sintering. On the other hand, although MRIMR consumes CO2, the exited CO2 flow rate at the SRIMR is three times more than that of at the MRIMR, which is a main advantage of MRIMR from the environmental issues point of view. 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(56):31745-31759
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming, water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations, the reactor is sized, and its design is optimized. 相似文献
14.
Harvey H.F. Wang S.C. Chen S.Y. Yang G.T. Yeh M.H. Rei 《International Journal of Hydrogen Energy》2012
The effect of the heat transfer area and the thermal conductivity of the reactor materials are evaluated with three identical structured reactors having multiple columned-catalyst bed and using three different reactor materials, aluminum alloy, brass and stainless steel. A series of compact methanol reformers are then designed and fabricated with the use of large reactor surface area in catalyst beds and high heat transfer constant to produce hydrogen fuel with 2–4 ppm of CO for the fuel cell (FC) power generation. The same design principle is successfully used for easy scale up of the reactor capacity from 250 L/h to 10,000 L/h. This low CO hydrogen (68–70%) used as the fuel for the fuel cell power generation provides a very competitive cost of hydrogen and electric power, $0.20–0.23/m3 of H2 and $0.196/KWh, respectively. 相似文献
15.
《International Journal of Hydrogen Energy》2023,48(68):26518-26525
Ni and Co catalysts supported on ITQ-6 zeolite have been synthesized and evaluated in the steam reforming of ethanol (SRE). Catalysts were also characterized by means of N2 adsorption-desorption, XRD, H2-TPR, and H2-chemisorption. ITQ-6 containing Co (Co/ITQ-6) presented a higher conversion of ethanol and production of hydrogen than ITQ-6 containing Ni (Ni/ITQ-6). The lower size of the metallic cobalt particles shown in Co/ITQ-6 seems to be the major responsible of its higher catalytic performance. Regarding the reaction by-products (CO, CH4, C2H4O and CO2), Co/ITQ-6 showed the lowest selectivity at medium and high temperatures (773 and 873 K). At low reaction temperatures (673 K) the dehydrogenation reaction predominates in the Co/ITQ-6, what it is supported by the high concentration of acetaldehyde detected at this temperature. In the case of the Ni/ITQ-6 the main side reaction at 673 K seems to be the methanation reaction since large concentrations of methane are detected. Stability studies were also carried out showing lower deactivation of Co/ITQ-6 at large reaction times (24 h). Characterization of the exhausted catalysts after reaction showed the presence of coke in both catalysts. Nevertheless, Co/ITQ-6 presented the lowest coke deposition. In addition, Co/ITQ-6 exhibited the lowest metal sinterization, what could be also account for the lower deactivation exhibited by this sample. This fact could be related to the higher interaction between the cobalt metallic particles and the ITQ-6 support as the H2-TPR studies demonstrate. 相似文献
16.
A novel concept for hydrogen generation by methane steam reforming in a thermally coupled catalytic fixed bed membrane reformer is experimentally demonstrated. The reactor, built from three concentric compartments, indirectly couples the endothermic methane steam reforming with the exothermic methane oxidation, while hydrogen is separated by a permselective Pd membrane. The study focuses on the determination of the key operation parameters and understanding their influence on the reactor performance. It has been shown that the reactor performance is mainly defined by the dimensionless ratio of the methane steam reforming feed flow rate to the hydrogen maximal membrane flow rate and by the ratio of the oxidation and steam reforming methane feed flow rates. 相似文献
17.
In this work, perovskite-type oxides La1−xCaxFe0.7Ni0.3O3 were prepared by using a citrate complex method. The catalysts were employed in the reactions of steam reforming of ethanol (SRE) and oxidative steam reforming of ethanol (OSRE) to produce hydrogen. A reduction-oxidation cycle was proposed to overcome the problems of active component sintering and carbon deposition encountered in SRE reaction. In the ex-situ reactions, highly dispersed surface nickel particles formed during the reduction of La1−xCaxFe0.7Ni0.3O3, while during the introduction of an oxidative atmosphere these particles could be oxidized and restored back into the perovskite bulk. Owing to the existence of this segregation-incorporation cycle of nickel species in the perovskite oxides, the sintering of nickel particles under OSRE was found depressed effectively. Besides, this work proved that the oxygen in the feed is helpful to the elimination of deposited carbon. It seems promising for overcoming the problems of the active component sintering and carbon deposition in SRE reaction by regulating the redox ability of the perovskite-type oxides and the feed composition. 相似文献
18.
Jianhua Jiang Xi Li Zhonghua Deng Jie Yang Yisheng Zhang Jian Li 《International Journal of Hydrogen Energy》2012
In this paper a systematic method for the development of a constrained generalized predictive control (CGPC) system for a steam reformer is presented. Firstly, a control-oriented dynamic model deriving from physical conservation laws is established and validated by experimental data. Based on the physical model, the control system adopts the Takagi-Sugeno (T-S) fuzzy model to rapidly and accurately predict the reforming temperature. This is identified on-line using the forgetting factor recursive least square (FFRLS) technique. In order to handle input amplitude constraints, the Lagrange Multiplier method is implemented in GPC while the optimal control sequence is obtained by minimizing a multistage objective function. The numerical test results demonstrate that the CGPC control system cannot only achieve rapid and smooth responses, but also possesses excellent disturbance rejection capability which allows it to maintain the reforming temperature during fuel flow rate fluctuations due to SOFC system load variation. 相似文献
19.
A combined unit of biomass gasifier and tar steam reformer (CGR) was proposed in this study to achieve simultaneous tar removal and increased hydrogen production. Tar steam reforming calculations based on thermodynamic equilibrium were carried out by using Aspen Plus software. Thermodynamic analysis reveals that when selecting appropriate operating conditions, exothermic heat available from the gasifier could sufficiently supply to the heat-demanding units including feed preheaters, steam generator and reformer. The effects of gasification temperature (Tgs), reforming temperature (Tref) and steam-to-biomass ratio (S:BM) on percentages of tar removal and improvement of H2 production were investigated. It was reported that the CGR system can completely remove tar and increase H2 production (1.6 times) under thermally self-sufficient condition. The increase of H2 production is mainly via the water–gas shift reaction. 相似文献