首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermotolerant Klebsiella sp. TR17 for production of hydrogen from crude glycerol was investigated. Results from Plackett–Burman design indicated that the significant variables, which influenced hydrogen production, were KH2PO4 and NH4Cl (for buffer capacity and nitrogen source). Subsequently, the two selected variables and crude glycerol were optimized by the Central Composite design for achieving maximum hydrogen and ethanol yield. The concentration of crude glycerol, KH2PO4, and NH4Cl had an individual effect on both hydrogen and ethanol yield (p < 0.05), while KH2PO4 and NH4Cl had an interactive effect on ethanol yield (p < 0.05). The optimum medium components were 11.14 g/L crude glycerol, 2.47 g/L KH2PO4, and 6.03 g/L NH4Cl. The predicted maximum simultaneous hydrogen and ethanol yield were 0.27 mol H2/mol glycerol and 0.63 mol EtOH/mol glycerol, respectively. Validation of the predicted optimal conditions exhibited similar hydrogen and ethanol yield of 0.26 mol H2/mol glycerol and 0.58 mol EtOH/mol glycerol, respectively.  相似文献   

2.
This study evaluates the potential of bioconversion of crude glycerol, discharged from biodiesel production plant, to hydrogen (H2) by an enriched microbial community. Microbial community was enriched from activated sludge in a medium amended with 2.5 g/L of crude glycerol. Optimal cultivation parameters for H2 production such as initial pH, cultivation temperature and substrate concentration were investigated. H2 yields from raw glycerol at optimal conditions (pH 6.5; 40 °C and 1 g/L raw glycerol) were 1.1 ± 0.1 mol-H2/mol-glycerolconsumed. H2 production was associated with acetate-butyrate type fermentation, along with ethanol as one of the end products. Kinetic experiments on H2 production from pure and crude glycerol indicated the absence of any inhibitory effects from the impurities present in crude glycerol. The community analysis revealed that the enriched microbial consortium was dominated mainly by Clostridium species.  相似文献   

3.
Design of Experiments (DoE) was applied to improve the ability of enriched activity sludge to efficiently convert crude glycerol from biodiesel industry into hydrogen and ethanol, using a very simple synthetic medium. Based on Plackett–Burman screening design, glycerol concentration, temperature and initial pH were identified as significant variables. Box–Behnken design and Response Surface Method (RSM) were then used for optimization. The maximum hydrogen yield of 0.96 mol H2/mol glycerol was estimated at the temperature of 37.0 °C, initial pH of 7.9 and glycerol concentration of 15.0 g/L. Maximum hydrogen production rate of 2191 mL/L/d was estimated at the temperature of 37.3 °C, initial pH of 8.0 and glycerol concentration of 15.2 g/L. Finally maximum ethanol production of 7.92 g/L was estimated at an initial pH of 8.0 and glycerol concentration of 15.0 g/L (temperature had no significant effect). These results show that it is possible to obtain both, high yield and production of hydrogen and ethanol together, using a very simple synthetic medium, without trace element- and vitamin solution, tryptone or yeast extract.  相似文献   

4.
Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 was investigated in an up-flow anaerobic sludge blanket (UASB) reactor. The reactor was operated under non-sterile conditions at 40C and initial pH 8.0 at different hydraulic retention times (HRTs) (2–12 h) and glycerol concentrations (10–30 g/L). Decreasing the HRT led to an increase in hydrogen production rate (HPR) and hydrogen yield (HY). The highest HPR of 242.15 mmol H2/L/d and HY of 44.27 mmol H2/g glycerol consumed were achieved at 4 h HRT and glycerol concentrations of 30 and 10 g/L, respectively. The main soluble metabolite was 1,3-propanediol, which implies that Klebsiella sp. was dominant among other microorganisms. Fluorescence in situ hybridization (FISH) revealed that the microbial community was dominated by Klebsiella sp. with 56.96, 59.45, and 63.47% of total DAPI binding cells, at glycerol concentrations of 10, 20, and 30 g/L, respectively.  相似文献   

5.
Factors affecting simultaneous hydrogen and ethanol production from waste glycerol by a newly isolated bacterium Enterobacter aerogenes KKU-S1 were investigated employing response surface methodology (RSM) with central composite design (CCD). The Plackett-Burman design was first used to screen the factors influencing simultaneous hydrogen and ethanol production, i.e., initial pH, temperature, amount of vitamin solution, yeast extract (YE) concentration and glycerol concentration. Results indicated that initial pH, temperature, YE concentration, and glycerol concentration had a statistically significant effect (p ≤ 0.05) on hydrogen production rate (HPR) and ethanol production. The significant factors were further optimized using CCD. Optimum conditions for simultaneously maximizing HPR and ethanol production were YE concentration of 1.00 g/L, glycerol concentration of 37 g/L, initial pH of 8.14, and temperature of 37 °C in which a maximum HPR and ethanol production of 0.24 mmol H2/L h and 120 mmol/L were achieved.  相似文献   

6.
To achieve more stable bio-hydrogen (bioH2) production from non-food feedstocks, stable feedstock preparations of marine biomass and an efficient bioH2 system using marine bacteria under saline conditions are two important key technologies that needed to be developed. Vibrio tritonius strain AM2, which was isolated from the gut of a marine invertebrate, was cultured under various conditions in marine broth (at initial 2.25% (w/v) NaCl) supplemented with mannitol, a seaweed carbohydrate, to evaluate its hydrogen production. The maximum molar yield of bioH2 was recorded as 1.7 mol H2/mol mannitol at pH 6 and 37 °C. The mannitol-grown cells had higher yields of bioH2 than the glucose-grown cells in the pH range 5.5–7.5. Compared to glucose, mannitol might be a better substrate for bioH2 production using strain AM2. Fermentation product profiling revealed that strain AM2 might be utilising the formate-hydrogen pathway for bioH2 production. Furthermore, strain AM2 was able to produce hydrogen from powdered brown macroalgae containing 31.1% dry weight of mannitol. The molar yield of hydrogen reached 1.6 mol H2/mol mannitol contained in the seaweed feedstock. In conclusion, strain AM2 has the ability to produce hydrogen from mannitol with high yields even under saline conditions.  相似文献   

7.
Statistical experimental designs were applied for the optimization of medium constituents for hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Using Plackett–Burman design, xylose, FeSO4 and peptone were identified as significant variables which highly influenced hydrogen production. The path of steepest ascent was undertaken to approach the optimal region of the three significant factors. These variables were subsequently optimized using Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be xylose 16.15 g/L, FeSO4 250.17 mg/L, peptone 2.54 g/L. Hydrogen production at these optimum conditions was 1149.9 ± 65 ml H2/L medium. Under different carbon sources condition, the cumulative hydrogen volume were 1217 ml H2/L xylose medium, 1102 ml H2/L glucose medium and 977 ml H2/L sucrose medium; the maximum hydrogen yield were 2.0 ± 0.05 mol H2/mol xylose, 0.64 mol H2/mol glucose. Fermentative hydrogen production from xylose by Enterobacter sp. CN1 was superior to glucose and sucrose.  相似文献   

8.
Glycerol is an inevitable by-product from biodiesel synthesis process and could be a promising feedstock for fermentative hydrogen production. In this study, the feasibility of using crude glycerol from biodiesel industry for biohydrogen production was evaluated using seven isolated hydrogen-producing bacterial strains (Clostridium butyricum, Clostridium pasteurianum, and Klebsiella sp.). Among the strains examined, C. pasteurianum CH4 exhibited the best biohydrogen-producing performance under the optimal conditions of: temperature, 35 °C; initial pH, 7.0; agitation rate, 200 rpm; glycerol concentration, 10 g/l. When using pure glycerol as carbon source for continuous hydrogen fermentation, the average H2 production rate and H2 yield were 103.1 ± 8.1 ml/h/l and 0.50 ± 0.02 mol H2/mol glycerol, respectively. In contrast, when using crude glycerol as the carbon source, the H2 production rate and H2 yield was improved to 166.0 ± 8.7 ml/h/l and 0.77 ± 0.05 mol H2/mol glycerol, respectively. This work demonstrated the high potential of using biodiesel by-product, glycerol, for cost-effective biohydrogen production.  相似文献   

9.
The batch fermentations of two hyperthermophilic eubacteria Thermotoga maritima strain DSM 3109 and Thermotoga neapolitana strain DSM 4359 were carried out to optimize the hydrogen production. The simple and economical culture medium using cheap salts with strong buffering capacity was designed based on T. maritima basal medium (TMB). Both strains cultivated under strictly anaerobic conditions showed the best growth at temperature of 75–80 °C and pH of 6.5–7.0. The maximum cell growth of 3.14 g DCW/L and hydrogen production of 342 mL H2 gas/L were obtained, respectively, in the modified TB medium containing 7.5 g/L of glucose and 4 g/L of yeast extract. Hydrogen accumulation in the headspace was more than 30% of the gaseous phase. Cells were also cultivated in cellulose-containing medium to test the feasibility of hydrogen production.  相似文献   

10.
In this study, hydrogen production by Rhodobacter sphaeroides RV from acetate was investigated. Ammonium sulphate and sodium glutamate were used to study the effects of nitrogen sources on photosynthetic hydrogen production. The results showed the optimal concentrations for ammonium sulphate and sodium glutamate were in the range of 0.4–0.8 g/L. Orthogonal array design was applied to optimize the hydrogen-producing conditions of the concentrations of yeast, FeSO4 and NiCl2. The theoretical optimal condition for hydrogen production was as follow: yeast 0.1 g/L, FeSO4 100 mg/L and NiCl2 20 mg/L.  相似文献   

11.
A hydrogen producing facultative anaerobic alkaline tolerant novel bacterial strain was isolated from crude oil contaminated soil and identified as Enterobacter cloacae DT-1 based on 16S rRNA gene sequence analysis. DT-1 strain could utilize various carbon sources; glycerol, CMCellulose, glucose and xylose, which demonstrates that DT-1 has potential for hydrogen generation from renewable wastes. Batch fermentative studies were carried out for optimization of pH and Fe2+ concentration. DT-1 could generate hydrogen at wide range of pH (5–10) at 37 °C. Optimum pH was; 8, at which maximum hydrogen was obtained from glucose (32 mmol/L), when used as substrate in BSH medium containing 5 mg/L Fe2+ ion. Decrease in hydrogen partial pressure by lowering the total pressure in the fermenter head space, enhanced the hydrogen production performance of DT-1 from 32 mmol H2/L to 42 mmol H2/L from glucose and from 19 mmol H2/L to 33 mmol H2/L from xylose. Hydrogen yield efficiency (HY) of DT-1 from glucose and xylose was 1.4 mol H2/mol glucose and 2.2 mol H2/mol xylose, respectively. Scale up of batch fermentative hydrogen production in proto scale (20 L working volume) at regulated pH, enhanced the HY efficiency of DT-1 from 2.2 to 2.8 mol H2/mol xylose (1.27 fold increase in HY from laboratory scale). 84% of maximum theoretical possible HY efficiency from xylose was achieved by DT-1. Acetate and ethanol were the major metabolites generated during hydrogen production.  相似文献   

12.
Hydrogen production using cellulosic residues offers the possibility of waste minimization with renewable energy recovery. In the present study, heat-treated biomass purified from leachate was used as inoculum in batch reactors for hydrogen production fed with different concentrations of cellulose (2.5, 5.0 and 10 g/L), in the presence and absence of exogenous cellulase. The heat-treated biomass did not degrade cellulose and hydrogen production was not detected in the absence of cellulase. In reactors with cellulase, the hydrogen yields were 1.2, 0.6 and 2.3 mol H2/mol of hydrolyzed cellulose with substrate degradation of 41.4, 28.4 and 44.7% for 2.5, 5.0 and 10 g/L cellulose, respectively. Hydrogen production potentials (P) varied from 19.9 to 125.9 mmol H2 and maximum hydrogen production rates (Rm) were among 0.8–2.3 mmol H2/h. The reactor containing 10 g/L of cellulose presented the highest P and Rm among the conditions tested. The main acid produced in reactors were butyric acid, followed by acetic, isobutyric and propionic acids. Bacteria similar to Clostridium sp. (98–99%) were identified in the reactors with cellulase. The heat-treated leachate can be used as an inoculum source for hydrogen production from hydrolyzed cellulose.  相似文献   

13.
Hydrogen producing novel bacterial strain was isolated from formation water from oil producing well. It was identified as Thermoanaerobacter mathranii A3N by 16S rRNA gene sequencing. Hydrogen production by novel strain was pH and substrate dependent and favored pH 8.0 for starch, pH 7.5 for xylose and sucrose, pH 8.0–9.0 for glucose fermentation at 70 °C. The highest H2 yield was 2.64 ± 0.40 mol H2 mol glucose at 10 g/L, 5.36 ± 0.41 mol H2 mol – sucrose at 10 g/L, 17.91 ± 0.16 mmol H2 g – starch at 5 g/L and 2.09 ± 0.21 mol H2 mol xylose at 5 g/L. The maximum specific hydrogen production rates 6.29 (starch), 9.34 (sucrose), 5.76 (xylose) and 4.89 (glucose) mmol/g cell/h. Acetate-type fermentation pathway (approximately 97%) was found to be dominant in strain A3N, whereas butyrate formation was found in sucrose and xylose fermentation. Lactate production increased with high xylose concentrations above 10 g/L.  相似文献   

14.
A unique thermophilic fermentative hydrogen-producing strain H53214 was isolated from a deep-sea hydrothermal vent environment, and identified as Caloranaerobacter azorensis based on bacterial 16S rRNA gene analysis. The optimum culture condition for hydrogen production by the bacterium, designated C. azorensis H53214, was investigated by the response surface methodology (RSM). Eight variables including the concentration of NaCl, glucose, yeast, tryptone, FeSO4 and MgSO4, initial pH and incubation temperature were screened based on the Plackett–Burman design. The results showed that initial pH, tryptone and yeast were significant variables, which were further optimized using the steepest ascent method and Box–Behnken design. The optimal culture conditions for hydrogen production were an initial pH of 7.7, 8.3 g L−1 tryptone and 7.9 g L−1 yeast. Under these conditions, the maximum cumulative hydrogen volume, hydrogen yield and maximum H2 production rate were 1.58 L H2 L−1 medium, 1.46 mol H2 mol−1 glucose and 25.7 mmol H2 g−1 cell dry weight (CDW) h−1, respectively. By comparison analysis, strain H53214 was superior to the most thermophilic hydrogen producers because of the high hydrogen production rate. In addition, the isolation of C. azorensis H53214 indicated the deep-sea hydrothermal environment might be a potential source for fermentative hydrogen-producing thermophiles.  相似文献   

15.
Thermophilic dark fermentative hydrogen producing bacterial strain, TERI S7, isolated from an oil reservoir flow pipeline located in Mumbai, India, showed 98% identity with Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. It produced 1450–1900 ml/L hydrogen under both acidic and alkaline conditions; at a temperature range of 45–60 °C. The maximum hydrogen yield was 2.5 ± 0.2 mol H2/mol glucose, 2.2 ± 0.2 mol H2/mol xylose and 5.2 ± 0.2 mol H2/mol sucrose, when the respective sugars were used as carbon source. The cumulative hydrogen production, hydrogen production rate and specific hydrogen production rate by the strain TERI S7 with sucrose as carbon source was found to be 1704 ± 105 ml/L, 71 ± 6 ml/L/h and 142 ± 13 ml/g/h respectively. Major soluble metabolites produced during fermentation were acetic acid and butyric acid. The strain TERI S7 was also observed to produce hydrogen continuously up to 48 h at pH 3.9.  相似文献   

16.
The effect of culture parameters on hydrogen production using strain GHL15 in batch culture was investigated. The strain belongs to the genus Thermoanaerobacter with 98.9% similarity to Thermoanaerobacter yonseiensis and 98.5% to Thermoanaerobacter keratinophilus with a temperature optimum of 65–70 °C and a pH optimum of 6–7. The strain metabolizes various pentoses, hexoses, and disaccharides to acetate, ethanol, hydrogen, and carbon dioxide. However substrate inhibition was observed above 10 mM glucose concentration. Maximum hydrogen yields on glucose were 3.1 mol H2 mol−1 glucose at very low partial pressure of hydrogen. Hydrogen production from various lignocellulosic biomass hydrolysates was investigated in batch culture. Various pretreatment methods were examined including acid, base, and enzymatic (Celluclast® and Novozyme 188) hydrolysis. Maximum hydrogen production (5.8–6.0 mmol H2 g−1 dw) was observed from Whatman paper (cellulose) hydrolysates although less hydrogen was produced by hydrolysates from other examined lignocellulosic materials (maximally 4.83 mmol H2 g−1 dw of grass hydrolysate). The hydrogen yields from all lignocellulosic hydrolysates were improved by acid and alkaline pretreatments, with maximum yields on grass, 7.6 mmol H2 g−1 dw.  相似文献   

17.
The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.  相似文献   

18.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

19.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

20.
A stepwise strategy was devised to optimize the bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol (1,3-PD) by a new strain Klebsiella pneumoniae. This strain is unique in its ability to convert glycerol simultaneously into 1,3-PD. The influence of glycerol concentration, pH, temperature, nitrogen and mineral sources were first investigated using the Plackett–Burman (P–B) statistical design to screen the variables that significantly affect the production of 1,3-PD. Seven variables were statistically significant at 95% significance and a 27-3 fractional factorial design (FFD) was applied to further refine the optimization of culture conditions. Results showed that the ideal medium composition and culture conditions for the syntheses of 1,3-PD are: glycerol 65 g/L, yeast extract 5 g/L, peptone 5 g/L, (NH4)2SO4 7 g/L, K2HPO4 7 g/L, and temperature of 37 °C. Experiments in batch bioreactors under controlled pH produced up to 23.80 g/L of 1,3-PD and 12.30 g/L of ethanol, while in fed-batch cultivations a three-fold increase of 1,3-PD production (36.86 g/L) was obtained compared with the results of the FFD design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号