首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes an optimal real-time energy management strategy based on the Pontryagin's Minimal Principle (PMP) targeting at minimizing operation cost for a plug in proton electrolyte membrane (PEM) fuel cell city bus. The Dynamic Programming (DP) and PMP strategies are firstly deduced. Influences of the initial co-state value on the PMP strategy are analyzed. The DP, PMP, Charge Depleting Charge Sustaining (CDCS) and Blended strategies are compared in a simulation model. Results show that, major factors that influent the operation cost are the end value of battery State of Charge (SoC), the SoC trajectory curve, and the distribution of the working points of the fuel cell system. From a statistic viewpoint, the operation cost increases almost linearly with the end value of the SoC with a gradient of 1.41 Yuan.%−1. Compared with a CDCS strategy, the operation cost can be reduced by 7.2% through taking the DP strategy, and by 5.9% through taking the PMP strategy. The PMP strategy leads to an operation cost that is 1.4% higher than the DP, but it is applicable in the real-time control system. An online energy management strategy based on PMP was set up and applied to an embedded controller. Tests in the 30 “China city bus typical cycles” showed that, the fuel economy was 5.8 kg (100 km)−1, and the operation cost was 271.3 Yuan (100 km)−1.  相似文献   

2.
We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars.We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO2 km−1 compared to reference petrol (163 g km−1) and diesel cars (156 g km−1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors.The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO2 km−1.  相似文献   

3.
The aim of this study was to determine the amount of input–output energy used in potato production and to make an economic analysis of potato production in Hamadan province, Iran. Data for the production of potatoes were collected from 100 producers by using a face to face questionnaire method. The population investigated was divided into two groups. Group I was consisted of 68 farmers (owner of machinery and high level of farming technology) and Group II of 32 farmers (non-owner of machinery and low level of farming technology). The results revealed that 153071.40 MJ ha−1 energy consumed by Group I and 157151.12 MJ ha−1 energy consumed by Group II. The energy ratio, energy productivity, specific energy, net energy gain and energy intensiveness were calculated. The net energy of potato production in Group I and Group II was 4110.95 MJ ha−1 and −21744.67 MJ ha−1, respectively. Cost analysis showed that total cost of potato production in Groups I and II were 4784.68 and 4172.64 $ ha−1, respectively. The corresponding, benefit to cost ratio from potato production in the surveyed groups were 1.09 and 0.96, respectively. It was concluded that extension activities are needed to improve the efficiency of energy consumption in potato production.  相似文献   

4.
Catalyzed sodium borohydride hydrolysis is a highly valuable method to produce clean hydrogen energy for portable applications. This study provides a new and fast route to preparation of reusable hybrid materials composed of nickel-boron based nanoclusters dispersed in nanoporous poly(acrylamide) hydrogels for catalyzed hydrogen production. Palladium was added to the Ni–B catalysts during chemical reduction under the protection of poly(N-vinylpyrrolidone). The resulting nanoclusters immobilized in the hydrogels were essentially alloy particles with uni-modal size distributions and average diameters ranging from ca. 4–8 nm. Pd exerted significant promoting effects on the activities of the Ni–B catalysts. The highest activity was achieved for Pd–Ni–B nanoclusters with a charge ratio of Pd/Ni = 1/20 in moles, which exhibited activity nearly twice that of a Ni–B catalyst and good recyclability for consecutive uses. The hydrogen production rates also increased with the decreasing particle sizes. The activation energy, enthalpy and entropy for the reaction were determined to be 31.10 kJ mol−1, 28.39 kJ mol−1 and -45.22 J mol−1 K−1, respectively. The activation energy is lower than that of previously reported polymer-stabilized Co(0), Fe(0), or Ni(0) nanoparticle catalysts.  相似文献   

5.
Electric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h−1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its IV curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m−3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.  相似文献   

6.
Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the “soak” temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle’s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (ρ) of the car’s shell by about 0.5 lowered the soak temperature of breath-level air by about 5–6 °C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25 °C within 30 min is 13% less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (ρ = 0.35) for a black shell (ρ = 0.05) would reduce fuel consumption by 0.12 L per 100 km (1.1%), increasing fuel economy by 0.10 km L−1 [0.24 mpg] (1.1%). It would also decrease carbon dioxide (CO2) emissions by 2.7 g km−1 (1.1%), nitrogen oxide (NOx) emissions by 5.4 mg km−1 (0.44%), carbon monoxide (CO) emissions by 17 mg km−1 (0.43%), and hydrocarbon (HC) emissions by 4.1 mg km−1 (0.37%). Selecting a typical white or silver shell (ρ = 0.60) instead of a black shell would lower fuel consumption by 0.21 L per 100 km (1.9%), raising fuel economy by 0.19 km L−1 [0.44 mpg] (2.0%). It would also decrease CO2 emissions by 4.9 g km−1 (1.9%), NOx emissions by 9.9 mg km−1 (0.80%), CO emissions by 31 mg km−1 (0.79%), and HC emissions by 7.4 mg km−1 (0.67%). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.  相似文献   

7.
Layered molybdenum disulfide (MoS2)–graphene composite is synthesized by a modified l-cysteine-assisted solution-phase method. The structural characterization of the composites by energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, XPS, Raman, and transmission electron microscope indicates that layered MoS2–graphene coalescing into three-dimensional sphere-like architecture. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy. Electrochemical measurements reveal that the maximum specific capacitance of the MoS2–graphene electrodes reaches up to 243 F g−1 at a discharge current density 1 A g−1. The energy density is 73.5 Wh kg−1 at a power density of 19.8 kW kg−1. The MoS2–graphene composites electrode shows good long-term cyclic stability (only 7.7% decrease in specific capacitance after 1000 cycles at a current density of 1 A g−1). The enhancement in specific capacitance and cycling stability is believed to be due to the 3D MoS2–graphene interconnected conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge–discharge process. Taken together, this work indicates MoS2–graphene composites are promising electrode material for high-performance supercapacitors.  相似文献   

8.
The hydrogen production from an easily transported liquid feedstock can be an efficient alternative for fuel cells application. The steam-oxidative reforming of bio-ethanol by a novel gliding arc discharge named Laval nozzle arc discharge (LNAD) was investigated in this paper at low temperature and atmospheric pressure. The conversion efficiency and product distributions, mainly of H2 and CO, were studied as functions of O/C ratio, S/C ratio, the ethanol flow rate and input power. The voltage–ampere (V–I) characteristic is also discussed here concerning the non-thermal plasma effect on the bio-ethanol reforming. A high conversion rate and fair H2 yield have been achieved, 90% and 40% respectively. When the ethanol flow rate (Gethanol) was 0.15 g s−1 and S/C = 2.0, the minimum specific energy requirement of H2 and CO were achieved at O/C = 1.4 with the specific energy input of 55.44 kJ per ethanol mole, 72.92 kJ mol−1 and 80.20 kJ mol−1 respectively. The optimal conditions for ethanol reforming seem to be S/C = 2.0 and O/C = 1.4–1.6, which are higher than those of the reaction's stoichiometry. This paper shows interesting results in comparison with the ethanol reforming assisted by other discharges. Compared with others, it features good conversion rate, low energy consumption and significantly reduced nitrogen oxide emission.  相似文献   

9.
Pyrolytic cook stoves in smallholder farms may require different biomass supply than traditional bioenergy approaches. Therefore, we carried out an on-farm assessment of the energy consumption for food preparation, the biomass availability relevant to conventional and pyrolytic cook stoves, and the potential biochar generation in rural households of western Kenya. Biomass availability for pyrolysis varied widely from 0.7 to 12.4 Mg ha−1 y−1 with an average of 4.3 Mg ha−1 y−1, across all 50 studied farms. Farms with high soil fertility that were recently converted to agriculture from forest had the highest variability (CV = 83%), which was a result of the wide range of farm sizes and feedstock types in the farms. Biomass variability was two times lower for farms with low than high soil fertility (CV = 37%). The reduction in variability is a direct consequence of the soil quality, coupled with farm size and feedstock type. The total wood energy available in the farms (5.3 GJ capita−1 y−1) was not sufficient to meet the current cooking energy needs using conventional combustion stoves, but may be sufficient for improved combustion stoves depending on their energy efficiency. However, the biomass that is usable in pyrolytic cook stoves including crop residues, shrub and tree litter can provide 17.2 GJ capita−1 y−1 of energy for cooking, which is well above the current average cooking energy consumption of 10.5 GJ capita−1 y−1. The introduction of a first-generation pyrolytic cook stove reduced wood energy consumption by 27% while producing an average of 0.46 Mg ha−1 y−1 of biochar.  相似文献   

10.
The study was carried out on energy requirement and energy input–output relationship of rice production in Guilan province of Iran. Data were collected from 105 farmers with face-to-face questionnaire method. The research results revealed rice production consumed a total energy of 39333 MJ ha−1 which fuel energy use was 46% followed by chemical fertilizer (36%), seed (8%) and biocide (6%), respectively. The share of direct, indirect, renewable and non-renewable energies was 49%, 51%, 11% and 89% respectively. The energy use efficiency and energy productivity were found as 1.53, 0.09 kg MJ−1, respectively. The econometric model was developed using Cobb–Douglas type function and results showed that fuel and machinery energy inputs contributed significantly to the yield. The results of sensitivity analysis of the energy inputs showed that the MPP value of fuel was the highest (0.93), followed by machinery (0.23), biocide (0.17) and seed (0.15) energy inputs. Economic analysis indicated that total cost of production was 3156 $ ha−1. Gross and net return were 1642 $ ha−1 and 940 $ ha−1, respectively and the benefit-cost ratio was calculated 1.29. Mainly, large farms (more than 1 ha) had better management and were more successful in energy use and economic performance.  相似文献   

11.
The utilization of solar energy for the conversion of water to hydrogen and oxygen has been considered to be an efficient strategy to solve crisis of energy and environment. Here, we report the synthesis of reduced graphene oxide–TiO2 nanoparticle composite system through the photocatalytic reduction of graphite oxide using TiO2 nanoparticles. Photoelectrochemical characterizations and hydrogen evolution measurements of these nanocomposites reveal that the presence of graphene enhances the photocurrent density and hydrogen generation rate. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm−2 and 127.5 μmole cm−2h−1 in 0.5 M Na2SO4 electrolyte solution under 1.5AM solar irradiance of white light with illumination intensity of 100 mW cm−2. In graphene–TiO2 nanocomposite, photogenerated electrons in TiO2 are scavenged by graphene sheets and percolate to counter electrode to reduce H+ to molecular hydrogen thus increasing the performance of water-splitting reaction.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/ammonium acetate (CH3COONH4)/1–butyl–3–methylimidazolium chloride (BmImCl) based polymer electrolytes were prepared by solution casting method. The ionic conductivity increased with temperature as shown in temperature dependent-ionic conductivity study. The maximum ionic conductivity of (7.31 ± 0.01) mS cm−1 was achieved at 120 °C upon adulteration of 50 wt% of BmImCl. The samples obeyed Vogel–Tamman–Fulcher (VTF) relationship. The glass transition temperature (Tg) of the polymer matrix was reduced by doping it with salt and ionic liquid as shown in differential scanning calorimetry (DSC). Supercapacitor was thus assembled. Wider potential stability range has been observed with addition of ionic liquid. Inclusion of ionic liquid also improved the electrochemical behavior of EDLC. The capacitance of supercapacitor were determined by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge tester. The cell also illustrated energy density of 2.39 Wh kg−1 and power density of 19.79 W kg−1 with Coulombic efficiency above 90%.  相似文献   

13.
A highly active and stable bimetallic nano-hybrid catalyst Graphene–Cobalt–Platinum (G–Co–Pt) is proposed for the enhanced and cost effective generation of hydrogen from Sodium Borohydride. Three different nano-hybrid catalysts namely Graphene–Cobalt (G–Co), Graphene–Platinum (G–Pt) and Graphene–Cobalt–Platinum (G–Co–Pt) are synthesized, characterized using XRD, FTIR, SEM, HRTEM, EDAX and Cyclic voltammetry (CV) analysis and tested for hydrogen generation. The activity and stability of the catalysts are analyzed by estimating the turnover frequency (TOF), the electrochemically active surface area (ECSA), the percentage decay of current density over ten cycles of CV and the decay in the rate of hydrogen generation with the age of catalyst. Among the three catalysts G–Co–Pt exhibits the highest catalytic activity (TOF = 107 min−1, ECSA = 75.32 m2/gm) and stability. The evaluated value of activation energy of the catalytic hydrolysis using G–Co–Pt is 16 ± 2 kJ mol−1.  相似文献   

14.
Starting with ruthenium(III) acetylacetonate a homogeneous catalyst is formed which catalyzes the release of 1 equivalent of hydrogen gas from the dehydrogenation of ammonia–borane in toluene solution at low temperature in the range 50–65 °C. Mercury poisoning experiments showed that the catalytic dehydrogenation of ammonia–borane starting with ruthenium(III) acetylacetonate is a homogeneous catalysis. The final product obtained after the catalytic dehydrogenation of ammonia borane was thoroughly characterized by using 11B Nuclear Magnetic Resonance and Infrared spectroscopies. The homogeneous catalyst formed from the reduction of ruthenium(III) acetylacetonate provides 950 turnovers (TTO) over 58 h and 27 (mol H2)(mol Ru)−1(h)−1 value of initial turnover frequency (TOF) in hydrogen generation from the dehydrogenation of ammonia–borane at 60 °C before deactivation. Kinetics of this homogenous catalytic dehydrogenation of ammonia–borane was studied depending on the catalyst concentration, substrate concentration, and temperature. The hydrogen generation was found to be first order with respect to both the substrate concentration and catalyst concentration. The activation parameters of this reaction were also determined from the evaluation of the kinetic data: activation energy; Ea = 48 ± 2 kJ mol−1, the enthalpy of activation; ΔH# = 45 ± 2 kJ mol−1 and the entropy of activation ΔS# = −152 ± 5 J mol−1 K−1.  相似文献   

15.
An Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode material was prepared through electrochemical oxidation co-deposition on an Al/conductive coating/α-PbO2–CeO2–TiO2 substrate. The effects of manganese nitrate concentration on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated using energy dispersive X-ray spectroscopy, anode polarization curves, quasi-stationary polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction. Results revealed that the WC and nano-ZrO2 content in the β-PbO2–MnO2–WC–ZrO2 composite coatings increased with increasing manganese nitrate concentration. Moreover, the highest values of 6.61 wt% and 3.51 wt%, respectively, were achieved at 80 g L−1 manganese nitrate. PbO2 content decreased and MnO2 content increased with the increasing manganese nitrate concentration; both the descending and ascending trends were nonlinear. The Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode obtained at 80 g L−1 manganese nitrate concentration in plating solution exhibited reduced overpotential for oxygen evolution (0.610 V at 500 A m−2), highest electrocatalytic activity, longest service life (360 h at 40 °C in 150 g L−1 H2SO4 solution at 2 A cm−2), and lowest cell voltage (2.75 V at 500 A m−2). Furthermore, the composite coating obtained with 80 g L−1 manganese nitrate had uniform crystal grains. The deposit formed was flat, dense, and crackless.  相似文献   

16.
Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65–90%) diesel using (5–30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel–diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5–30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated −0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW−1 h−1) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8–6.0% for NOx, 12.6–23.7% particulate matter (PM), 20.4–23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8–42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability.  相似文献   

17.
The present study focused on the mesophilic anaerobic bio-hydrogen production from PPS (pulp & paper sludge) and FW (food waste), and the subsequent anaerobic digestion of the effluent for the methane production under thermophilic conditions by a two-stage process. The maximum hydrogen yield of 64.48 mL g−1 VSfed and methane yield of 432.3 mL g−1 VSfed were obtained when PPS and FW were applied with 1: 1 VS ratio as the feedstock. No VFA were cumulated in the reactor during the period of hydrogen - methane fermentation, as well as no NH3–N and Na+ inhibition were found in the process. 71%–87% removal efficiencies of SCOD were attained for hydrogen and methane co-production. pH 4.8–6.4 and alkalinity 794–3316 mg CaCO3 L−1 for H2 fermentation, as well as pH 6.5–8.8 and alkalinity 4165–4679 mg CaCO3 L−1 for CH4 fermentation, were achieved without any adjustment. This work showed that anaerobic co-digestion of PPS and FW for hydrogen-methane co-production was a stable, reliable and effective way for energy recovery and bio-solid waste stabilization by the two-stage mesophilic–thermophilic process.  相似文献   

18.
Bimetallic Cu–Ni nanoparticles (NPs) were successfully immobilized in MCM-41 using a simple liquid impregnation-reduction method. All the resulting composites Cu–Ni/MCM-41 catalysts with various contents of Cu–Ni, and in particular Cu0.2Ni0.8/MCM-41 sample, outperform the activity of monometallic Cu and Ni counterparts and pure bimetallic Cu0.2Ni0.8 NPs in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. The Cu0.2Ni0.8/MCM-41 catalyst exhibits excellent catalytic activity with a total turnover frequency (TOF) value of 10.7 mol H2 mol catalyst−1 min−1 and a low activation energy value of 38 kJ mol−1 at room temperature. In addition, Cu0.2Co0.8/MCM-41 also exhibits excellent activity with a TOF value as high as 15.0 mol H2 mol catalyst−1 min−1. This obtained activity represents the highest catalytic active of Cu-based monometallic and bimetallic catalysts up to now toward the hydrolytic dehydrogeneration of ammonia borane (AB). The unprecedented excellent activity has been successfully achieved thanks to the strong bimetallic synergistic effects among the Cu–Ni (or Co) NPs of the composites.  相似文献   

19.
Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8–1.8 m3/m3-d), and COD removal rates (1.8–2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1–3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of −0.7–−1.2 kWh/kg-COD using MoS2 or Pt cathodes, and −3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater.  相似文献   

20.
With an attempt to extend the light absorption towards the visible range and inhibit the rapid recombination of excited electrons/holes, a new type photocatalysts, cadmium sulfide intercalated zirconium–titanium phosphate (CdS–ZTP) was synthesized. The photocatalysts were characterized by small angle X-ray diffraction studies (SAXS), N2 adsorption–desorption studies, diffused reflectance UV–vis (DRUV–vis) spectroscopic analysis, photoluminescence studies (PL), scanning electron microscopic/energy dispersive spectroscopic (SEM/EDS), X-ray photoelectron spectroscopic (XPS) studies etc. The samples exhibit a unique property of optical absorption in UV and visible regions with a wavelength, λ ≤ 450 nm followed by a clear long tail up to 700 nm. The pillared materials showed excellent activity for UV–visible light driven hydrogen production from photocatalytic splitting of water without using any co-catalyst. The photocatalytic activity of this cadmium sulfide pillared catalyst, as well as that of neat cadmium sulfide powder, was monitored for the visible light-induced evolution of hydrogen from water in the presence of hole scavenger, sulfide (S2−).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号