共查询到18条相似文献,搜索用时 109 毫秒
1.
为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。 相似文献
2.
丁少华 《中国信息技术教育》2014,(20):61-61
为了提高入侵检测率,降低误检率,提出一种人工鱼算法优化神经网络的网络入侵检测模型。首先收集网络入侵数据并进行预处理,然后输入到神经网络进行学习,并采用人工鱼群算法对网络参数进行优化,最后采用KDD CUP 99数据集进行仿真实验。结果表明,本模型可以获得理想的网络入侵检测率和误检率。 相似文献
3.
李佳 《计算机应用与软件》2015,(2):311-314
为了提高网络入侵检测的正确率,提出一种混合入侵杂草HIWO(hybrid invasive weed optimization)算法优化SVM的网络入侵检测模型(HIWO-SVM)。该模型将SVM参数编码为入侵杂草,并以网络入侵检测率作为杂草种子适应度函数,然后通过模拟杂草入侵种子的空间扩散、生长、繁殖和竞争等过程找到SVM的最优参数。在寻优过程中引入遗传算法交叉操作以增强HIWO算法跳出局部极值的能力,最后根据最优参数建立网络入侵检测模型。在Matlab 2012平台采用KDD CUP 99数据集仿真测试,结果表明HIWO-SVM可以获得满意的网络入侵检测效果。 相似文献
4.
针对支持向量机参数优化问题,为了提高网络入侵检测率,提出一种变异蚁群算法优化支持向量机的网络入侵检测模型(MACO-SVM)。首先采用蚁群搜索路径节点代表支持向量机参数,并将网络入侵检测率为目标函数,然后通过蚁群算法的全局寻优能力和反馈机制寻找最优参数,并对蚂蚁进行高斯变异,克服蚁群陷入局部极值,最后将最优路径上的节点连接起来得到 SVM的最优参数,建立最优网络入侵检测模型。采用KDD99数据集对模型进行仿真实验,仿真结果表明,MACO-SVM的网络入侵检测速度要快于其它网络入侵检测模型,而且提高了网络入侵检测率。 相似文献
5.
6.
为解决传统入侵检测算法存在的高漏报率及高误报率问题,结合BP神经网络算法的优点,提出一种采用遗传算法来优化BP神经网络算法的入侵检测算法。该算法通过遗传算法找到BP神经网络的最适合权值,采用优化的BP神经网络对网络入侵数据进行学习和检测,解决直接使用BP学习造成的训练样本数量过大而难以收敛的问题,同时缩短样本训练时间,提高BP神经网络分类正确率。仿真实验结果表明,与传统网络入侵检测算法相比,该算法的训练样本时间更短,具有较好的识别率和检测率。 相似文献
7.
BP神经网络优化算法在入侵检测中的应用研究 总被引:1,自引:0,他引:1
入侵检测系统是当前信息安全领域的研究热点,在保障信息安全方面起着重要的作用。在对BP神经网络优化算法进行对比研究的基础上,利用Levenberg-Marquardt算法对传统BP算法进行改进,成功地将LMBP算法运用到入侵检测中去。实验结果表明,运用Levenberg-Marquardt算法优化BP神经网络进行入侵检测,可以较好地提高学习速率,缩短收敛时间。 相似文献
8.
赖锦辉 《计算机测量与控制》2014,22(8):2709-2712
节点定位是无线传感器网络应用中的关键技术,Dv-Hop算法的定位精度不尽人意,因此将三方面改进的蝙蝠算法应用于Dv-Hop平均跳距的计算过程中,在Dv-Hop的第三阶段引入改进后的蝙蝠算法代替最小二乘法来计算未知节点的坐标,大大降低平均跳距导致的定位误差,提高定位精度;仿真结果表明,改进的BA算法优化的DV-hop定位算法在不同锚节点密度、不同通信半径、不同节点数量以及定位精确度等方面表现出良好的性能。 相似文献
9.
为了能够对计算机辅助分子设计过程中产生的分子实现精确的热物性预测,采用工质的沸点为重要预测参数,将现有的烷烃、烯烃、卤代烃、醇、醚、胺等6类热力循环所使用的工质划分为16类基团,并引入拓扑指数来区分同分异构体。提出了一种基于蝙蝠算法优化过的BP人工神经网络来预测工质的沸点温度。最后,通过仿真实验将优化后得到的BA-ANN与典型的GA-ANN模型进行误差对比,结果表明新构建的BA-ANN模型的各类预测误差均低于GA-ANN模型,其新模型能够显著提高工质沸点温度的预测精度。 相似文献
10.
阐述了基于神经网络LMBP算法的入侵检测方法,在对网络中的IP数据包进行分析处理以及特征提取的基础上,采用神经网络进行训练或判别,以达到对未知数据包进行检测的目的.由传统的BP算法与LMBP算法的分析与比较得到:LMBP算法解决了传统BP算法的收敛速度慢、易陷入局部最小的问题.实验结果表明,LMBP算法的学习速度快,收敛速度快,将这个算法应用于基于神经网络的入侵检测,效果良好,判别准确率高,为实现高效准确的入侵检测提供了一种有效的方法. 相似文献
11.
12.
基于神经网络的入侵检测是常见的智能入侵检测方法,能够对网络内部、外部攻击进行防御。将神经网络和遗传算法相结合,采用改进适应度遗传算法优化神经网络。实验结果表明,该方法能够有效的提高系统的检测率,降低误报率。 相似文献
13.
提出了一种改进型的动态神经网络,并成功地将其应用于网络入侵检测系统中。对于给定的全连接的动态神经网络,在通过学习以后可以成为部分连接的神经网络系统,从而降低了计算的成本。针对目前常见的4种不同类型的网络攻击行为(即DoS,Probe,R2L,和U2R),利用给定的改进型的动态神经网络分别构建相对应的检测系统。然后使用改进的遗传算法对给定的动态神经网络的权值和开关参数进行调节,以适应不同类型的入侵检测。最后利用KDD’99网络入侵检测数据对所提出的网络入侵检测模型进行训练和测试,初步试验结果表明,所提出的入侵检测系统具有较高的检测率。 相似文献
14.
基于优化自组织聚类神经网络的入侵检测方法研究 总被引:1,自引:0,他引:1
提出一种将自组织聚类神经网络运用于入侵检测的方法。在这种方法中采用自适应谐振学习算法进行训练;当网络的平均误差不再有意义地减少时,用遗传算法对网络继续进行训练得到最佳权值。用神经网络和遗传算法使网络结构和网络连接权值同时进化,收敛性好,自适应性强,适合于实时处理。仿真结果表明该网络取得良好检测效果。 相似文献
15.
为了提高网络入侵检测的正确率,提出一种基于组合算法选择特征的网络入侵检测模型(GA-PSO)。首先建立网络入侵特征选择的数学模型,采用遗传算法迅速找到网络入侵的特征子集,然后采用粒子群算法进一步选择,找到最优特征子集,最后采用极限学习机建立网络入侵检测分类器,并采用KDD CUP 99数据集进行仿真测试。结果表明,GAPSO不仅提高了入侵检测速度,而且可以提高网络入侵检测的正确率。 相似文献
16.
基于粗糙集-神经网络的入侵检测方法研究 总被引:2,自引:0,他引:2
彭宏 《计算机工程与应用》2004,40(20):143-145
提出了一种融合粗糙集与神经网络的入侵检测方法。首先用粗糙集约简属性、简化神经网络设计,然后通过神经网络进行入侵检测。实验结果表明该方法优于其他同类方法。 相似文献
17.
在高速网络环境中,对复杂多样的网络入侵进行快速准确的检测成为目前亟待解决的问题。联邦学习作为一种新兴技术,在缩短入侵检测时间与提高数据安全性上取得了很好的效果,同时深度神经网络(DNN)在处理海量数据时具有较好的并行计算能力。结合联邦学习框架并将基于自动编码器优化的DNN作为通用模型,建立一种网络入侵检测模型DFC-NID。对初始数据进行符号数据预处理与归一化处理,使用自动编码器技术对DNN实现特征降维,以得到DNN通用模型模块。利用联邦学习特性使得多个参与方使用通用模型参与训练,训练完成后将参数上传至中心服务器并不断迭代更新通用模型,通过Softmax分类器得到最终的分类预测结果。实验结果表明,DFC-NID模型在NSL-KDD与KDDCup99数据集上的准确率平均达到94.1%,与决策树、随机森林等常用入侵检测模型相比,准确率平均提升3.1%,在攻击类DoS与Probe上,DFC-NID的准确率分别达到99.8%与98.7%。此外,相较不使用联邦学习的NO-FC模型,DFC-NID减少了83.9%的训练时间。 相似文献
18.
应用在计算机集成过程系统(CIPS)网络中的入侵检测系统误报率和漏报率较高.针对该问题,利用遗传算法的全局寻优能力和神经网络对于非线性映射的强大逼近能力,提出具有自学习和自适应能力、基于遗传算法神经网络(GANN)的入侵检测模型,包括数据采集模块、数据预处理模块、神经网络分析模块和入侵报警模块4个部分.为克服遗传算法易早熟、搜索迟钝的缺点,对GANN的适应度值调整方式进行改进,对遗传算法的参数设定进行优化,并采用改进的遗传算法优化收敛速度慢、易陷入极值的BP神经网络.仿真实验结果表明,该模型使系统的检测率提高至97.11%. 相似文献