共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
基于NSCT和PCNN的可见光与红外图像融合算法 总被引:1,自引:0,他引:1
提出了一种基于Contourlet变换的非下采样变换(Nonsubsampled ContourletTransform,NSCT)和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的可见光与红外图像融合算法。该算法首先对源图像进行NSCT分解,得到低频子带系数和各带通方向子带系数。然后对低频子带系数提出一种基于可见光与红外图像自身特性的加权平均融合方法,再对各带通子带系数提出基于PCNN的融合方法。最后经过NSCT逆变换得到融合图像。实验证明,该方法优于小波方法和传统的NSCT方法。 相似文献
6.
针对传统的基于多尺度变换方法使用的单一特征而忽略了曲线、边缘等互补特征的问题,提出了一种基于麦克劳林展开与高斯同态滤波增强相结合的脉冲耦合神经网络(PCNN)医学图像融合方法.首先通过麦克劳林展开将源图像分解为偏差分量和多级能量分量(以下分解到三级),再将三级能量分量进行高斯同态滤波增强获得增强的三级能量分量子图;然后使用自适应PCNN模型分别对偏差分量和多级能量分量进行融合,利用加权平均规则融合二级能量分量融合子图和增强的三级能量分量融合子图得到增强的能量分量融合图;最后反向麦克劳林展开获得融合图像.实验结果显示,该方法在图像清晰度、细节信息保留程度以及图像融合质量等方面与其他方法相比较更具有普适性. 相似文献
7.
为充分提取源图像间的互补信息,改进传统的图像融合算法在亮度维持、能量保留、边缘信息保持等方面的不足,本文提出了基于脉冲耦合神经网络(pulse coupled neural network, PCNN)图像分割的医学图像融合算法。该算法综合了非下采样剪切波变换(non-subsampled shearlet transform, NSST)与PCNN。首先,选取标准差较大的源图像作为被分割图像,标准差较小的源图像作为参照图像,将源图像进行NSST分解,获取源图像低频子带系数和高频子带系数;在低频融合中,利用参数自适应的PCNN对被分割图像的低频子带进行分割,根据分割结果获取融合低频子带系数;在高频融合中,采用以区域能量和与拉普拉斯能量和两者的乘积作为判断函数,获取融合高频子带系数;利用NSST逆变换获取融合图像。最后,应用本文提出的算法,对脑萎缩、急性中风和高血压性脑病等3组电脑断层扫描/磁共振成像(computerized tomography/magnetic resonance imaging, CT/MRI)图像进行了融合仿真,并将仿真结果与2018年后国际刊上提出的5种算法的融合图像进行比较。结果表明,应用本文提出的融合算法得到的图像,有效地增强了不同模态间的信息互补,保持了融合图像与源图像具有相同明亮程度,又保留了源图像低亮度部分的边缘信息,更加符合人眼视觉特性,具有更高的客观评价指标。 相似文献
8.
基于NSST和改进PCNN的医学图像融合 总被引:1,自引:0,他引:1
为了解决单一模态医学图像的局限性,提出了一种 基于非下采样剪切波变换(NSST)和改进型脉冲耦合神经网络(PCNN)相结合的多模态医学图 像融合方法。首先,利用NSST对源图像进行多尺度、多方向分解,得到 低频子带系数和高频子带系数;其 次,低频子带系数由区域能量和方差求取区域特征,采用基于区域特征加权的方式进行融合 ;高频内层子 带系数先通过PCNN求出区域点火特性,再与平均梯度加权的方式进行选择,高频外层子 带系数采用区 域绝对值取大的融合规则;最后,通过逆NSST重构图像。实验结果表明:与常用融合 规则对比,在 主观效果上,本文的融合图像可以保留源图像的边缘信息,得到更好的视觉效果;在客观指 标上,本文方法 融合得到的图像在互信息(MI)、边缘评价因子(QAB/F)和 结构相似度(SSIM)等客观评价指标上取得更好的效果。 相似文献
9.
针对红外和可见光图像的特点,本文提出了一种基于非下采样剪切波变换(NSST)和自适应的脉冲耦合神经网络(PCNN)相结合的红外与可见光图像融合的新算法。对经过NSST变换后的低频子带系数采用带高斯权重分布矩阵的局域方差和方差匹配度相结合的融合规则,对高频子带系数采用一种改进的空间频率作为PCNN输入,且采用改进的拉普拉斯能量和作为PCNN的链接强度,利用PCNN全局耦合性和脉冲同步性选择高频子带系数,最后经NSST逆变换后得到融合结果。实验结果表明,本文提出的算法与传统的图像融合算法相比不仅在主观视觉上取得较好的效果,而且在客观标准上也有了一定的提高。 相似文献
10.
针对NSCT移不变形、多尺度性和多方向性等特点,结合脉冲耦合神经网络,量融合规则,高频系数则采用PCNN融合规则。最终对融合后的系数经NSCT 逆变换得到了融合图像。实验结果表明,该方法更好地保留了原图像中的有用信息,并提高了融合图像质量。 相似文献
11.
针对基于NSCT变换的遥感图像融合算法存在计算复杂度高,细节表现能力不足的问题,本文提出了一种基于NSST变换与自适应PCNN的多特征遥感图像融合算法。首先,利用HSV变换提取MS图像的亮度分量V,并将得到的亮度分量V与PAN图像分别进行NSST变换;其次,对于低频子带,提出了一种基于自适应的PCNN融合规则,将空间频率和区域平均梯度分别作为PCNN的外部激励和链接强度;对于高频子带,采用基于多特征的融合规则;最后,进行逆NSST变换和逆HSV变换得到融合图像。仿真实验表明,该算法与一些经典的融合算法相比不仅可以提高图像融合质量,在视觉效果和客观指标上也都有良好的表现。 相似文献
12.
傅瑶;孙雪晨;薛旭成;韩诚山;赵运隆;曲利新 《液晶与显示》2013,28(3):429-434
为了同时改善遥感图像的空间分辨率和光谱分辨率,提高遥感图像信息量,提出了一种基于非下采样轮廓波变换的全色图像与多光谱图像的融合方法。首先,对多光谱图像进行HIS变换,获取其亮度分量;分别对多光谱图像的亮度分量和全色图像进行非下采样轮廓波变换,获取其高低频系数;采用脉冲耦合神经网络算法和加权融合对高低频系数进行选取;最后,经过逆HIS变换和逆非下采样轮廓波变换获得最终融合后图像。实验结果表明,本文融合方法处理后遥感图像的光谱失真少,信息量和清晰度都优于其他传统遥感图像融合方法。 相似文献
13.
针对网上商品图像的特点,提出了一种多特征融合的分类方法。本文针对颜色和商品图案风格两方面对图像进行分类。首先对商品图像进行分割,再提取特征,颜色特征选择提取颜色直方图特征和颜色矩特征;提取PHOG和SIFT特征来描述图案风格。然后采用基于决策的加权融合方法将两种特征结合起来进行分类,最后在数据集上进行实验,与仅用单一特征分类和使用普通多特征拼接方法作比较,使用本文融合特征的方法进行分类准确率较高,并且其准确率有8%~10%的提升。实验结果表明本文提出的方法是一种有效的商品图像分类方法。 相似文献
14.
利用脉冲耦合神经网络的高光谱多波段图像融合方法 总被引:2,自引:0,他引:2
针对高光谱图像波段众多、数据量大的特点,提出了一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks, PCNN)模型的高光谱多波段图像融合方法.根据高光谱图像多输入的特点对原始PCNN模型进行了扩充,采用多通道PCNN模型来对输入图像进行非线性融合处理.通过分析传统变阈值衰减模型的特点及其不足,提出了修正的变阈值指数增加模型,以改善融合效果和降低PCNN运行的时间复杂度.利用记录点火时刻的赋时矩阵得到带有一定增强效果的融合结果图像.实验结果表明,该方法的融合效果要优于传统的主成分分析融合方法和小波变换融合方法. 相似文献
15.
提出了一种基于离散剪切波(shearlet)和改进的脉冲耦合神经网络(PCNN)进行图像融合的方法。首先,采用shearlet变换将已配准的两个源图像进行分解,得到低频子带系数和不同尺度不同方向的高频子带系数,低频部分采用简单的加权平均法;高频部分,提出基于改进的拉普拉斯能量作为PCNN链接强度的算法。最后,进行shearlet反变换得到融合图像。仿真结果表明,本文的算法有更好的融合效果,并且所用时间也比非采样轮廓波(NSCT)少。 相似文献
16.
17.
聚类作为一种重要的图像分割方法得到了大量研究,提出了一种新的结合稀疏编码的红外图像聚类分割算法,扩展了传统的基于K-means聚类的图像分割方法。结合稀疏编码的聚类算法能有效融合图像的局部信息,而且易于利用像素之间的内在相关性,但是对于分割会出现过分割和像素难以归类的问题。为此,在字典的学习过程中,将原子的聚类算法引入其中,有助于缩减字典中原子所属类别的数目防止出现过分割;同时将稀疏编码系数同原子对聚类中心的隶属程度相结合来判断像素所属的类别。这种处理方式能更好地实现利用像素的内在相关性进行聚类分割,并在其中自然引入了局部空间信息,达到更好分离目标区域和背景区域的目的。实验结果表明,结合稀疏编码的K-means聚类分割算法能更好的实现复杂背景下红外图像重要区域的准确分割提取。 相似文献
18.
19.
介绍了PCNN模型原理,提出了基于双通道自适应的PCNN多光谱与全色图像融合算法。该算法首先将RGB空间的多光谱图像转换为HSV彩色空间,然后将HSV彩色空间中的非彩色通道(V通道)的灰度像素值和全色图像的像素灰度值分别作为PCNN-1及PCNN-2的神经元输入,利用方向性信息作为自适应链接强度系数,对非彩色通道图像和全色图像进行自适应分解,再将点火时间序列送入判决因子得到新的非彩色通道图像,最后将原多光谱图像的H通道分量、S通道分量及新的V通道分量经HSV空间逆变换获得最终的融合图像。实验结果表明,该算法不仅解决了链接强度系数自动设置的问题,而且充分考虑到图像边缘和方向特征的影响,无论在主观视觉效果,还是客观评价标准上均优于IHS、PCA、小波融合等其他图像融合算法,同时降低了计算复杂度。 相似文献
20.
为了提高高分辨率图像分割效率,解决复杂图案中待分割目标边缘附近前景与背景区分度小而造成的分割目标不完整问题,本文通过引入超像素HOG特征,提出了一种基于超像素多特征融合(superpixel multi-feature fusion,SMFF)的快速图像分割算法.首先采用目前最有效的超像素算法对待分割图像进行超像素预分割,然后提取基于超像素的HOG特征、Lab颜色特征和空间位置特征,设计基于超像素的多特征度量算法,最终采用图割理论实现了基于超像素多特征融合的快速图像分割.实验结果验证了本文算法的有效性,其算法性能接近于目前最经典图像分割算法,且本文算法的时间性能要明显优于其它对比算法. 相似文献