首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了Ti/Zr比变化对Ti Mn基Laves相贮氢合金贮氢性能的影响,发现随Ti/Zr、Mn/Cr比降低,合金放氢压降低,贮氢量略微增加,平台坡度变陡。  相似文献   

2.
本文研究Zr1-xTix(Ni0.6 Mn0.3V0.1Cr0.05)2(x=0,0.1,0.2,0.3,0.4,0.5)系Lav es相储氢电极合金的气态P-C-T性能、晶体结构及电化学性能.XRD分析表明,Ti合金化使 Zr基储氢合金主相从C15相转变为C14相.当x>0.2时,第二相Zr7Ni10相消失, 并出现TiNi相.Ti合金化使Zr基储氢合金中C15相和C14相的晶格常数线性递减.气态P-C-T 测试表明,Ti合金化从x=0增加至x=0.5时合金的吸放氢平台压力升高约10倍,但降低了储氢合金的最大储氢容量.电化学测试表明,Ti合金化有利于改善Zr基储氢合金的活化性能, 这与Ti在KOH溶液中易于溶解有关,但过高的Ti含量降低了合金电极的循环稳定性.Zr1 -xTix(Ni0.6Mn0.3V0.1Cr0.05)2合金的电化学容量和高倍率放电性能均随合金中Ti含量的增加先上升后下降,这与合金的相结构组成有很大关系 .  相似文献   

3.
ZrTi-V-Mn-Ni系贮氢合金的相结构与电化学性能研究*   总被引:2,自引:1,他引:1  
文明芬  翟玉春  陈廉  佟敏 《功能材料》2001,32(4):379-381
优化合金组成,设计六种锆基AB2型贮氢合金材料。XRD分析表明,当0≤x≤0.5时,Zr1-xTix(NiCoMnV)2.1贮氢合金的主相都是Laves C15,但随Ti含量的增加,Laves C14相含量增多;当用V-Fe(85.6%)合金代替Zr0.6Ti0.4(NiCoMn-VFeCr)1.7中的V时,贮氢合金中Laves C14相的含量几乎可与Laves C15相当。电化学测试表明:Zr0.9Ti0.1(NiCoMnV)2.1贮氢电极的放电容量可达340mAh/g左右,但是随着Ti含量的逐渐增加,合金电极的放电容量降低很快。以适量的(V-Fe)合金取代Zr0.6Ti0.4(NiCoMnVFeCr)1.7合金中的V和Fe,发现合金电极的第一次放电容量就能达到200mAh/g左右,并且其容量稍高于含纯V的合金电极,容量可达315mAh/g左右。  相似文献   

4.
采用XRD、SEM-EDS等方法对Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金的微观结构及电化学性能进行了表征。XRD分析结果表明Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)储氢合金由BCC结构的V基固溶体主相和少量的C14Laves第二相组成。SEM-EDS分析结果表明,V基固溶体主相为树枝晶结构,C14Laves相呈网格状沿着主相晶界析出。电化学测试结果表明,Ti0.4Zr0.1V1.1Mn0.5Ni0.4Crx(x=0,0.1,0.2,0.3)氢化物电极在303K下,随Cr含量的增加,最大放电容量分别为574.6mAh/g、418.8mAh/g、368.8mAh/g和322.9mAh/g。当x=0.3时,合金电极在333K下的最大放电容量达到了824.1mAh/g。Cr的添加显著提高了合金电极的高倍率放电性能和循环寿命,40次充放电循环后Ti0.4Zr0.1V1.1Mn0.5Ni0.4Cr0.3合金电极的容量保持率为62.3%。  相似文献   

5.
李嵩季世军  孙俊才 《功能材料》2004,35(Z1):1039-1041
研究了非计量比合金Zr(Cr0.2Mn01V0.05Ni0.65)x(x=1.8~2.4)的相结构和电化学性质.结果发现,欠计量比时,随x变小,合金中C14型Laves相增多,第二相Zr7Ni10减少至消失,并出现了新相Zr9Ni11.而过计量比时,随x增加,合金中C14型Laves相和Zr7Ni10相都相应减少至消失,合金Zr(Cr0.2Mn0.1V005Ni0.65)24由C15型Laves单相组成.过计量比合金具有较好的活化性能,但非计量比合金的放电容量普遍低于计量比合金,而且非计量比对合金高倍率放电性能的提高影响不大.  相似文献   

6.
贮氢材料钒基固溶体合金的研究进展   总被引:1,自引:1,他引:0  
陈昌国  王常江 《材料导报》2007,21(11):68-71
钒基固溶体合金是一类重要的贮氢材料.概述了金属钒的氢化特性,讨论了钒基固溶体合金有效贮氢量低的原因;综述了合金组元及非金属杂质元素对钒基固溶体合金性能的影响,在吸氢主要元素钒基中添加其它元素(Ti、Ni、Cr、Mn、Fe、Hf、Zr、Nb、Co、Al、Si等)有利于提高合金的贮氢性能.  相似文献   

7.
采用磁悬浮感应熔炼方法制备了Ti_(10)V_(83-x)Fe_6ZrMn_x(x=0、2、4、6)储氢合金,系统研究了Mn含量对合金微观结构和储氢特性的影响.XRD及SEM分析表明,无Mn合金(x=0)具有体心立方(bcc)结构的Ti-V基固溶体单相结构,而含Mn合金(x=2~6)均由bcc主相和C14型Laves第二相组成;随着Mn含量的增加,合金bcc主相的晶格常数和晶胞体积逐渐减小.储氢性能测试表明:该系列合金的吸氢动力学性能较好,在室温和4MPa初始氢压条件下,含Mn合金无需氢化孕育期就能快速吸氢;随着Mn含量的增加,合金的P-C-T放氢平台倾斜度逐渐减小,333K放氢平台压力先增后减,并在x=4达到最高;但合金的室温吸氢容量和333K有效放氢容量随Mn含量的增加而逐渐降低.  相似文献   

8.
首次系统地研究了Zr-Cr-Ni系Laves相贮氢合金晶体特性及其电极特性。首先从Zr(Cr_xNi_(1-x))_2系三元贮氢合金入手,探讨了合金成分、晶体特性与合金电极性能之间的关系。在x=0.15~0.65范围内,三元贮氢合金主相均属于Laves相结构,在x=0.45~0.50范围内,其主相晶体结构类型发生从C15型向C14型转化,且晶格常数随Cr量增加而增大,并且在x=0.35~0.50范围内,合金电极具有较好的电化学性能。用3d过渡元素Mn、V、Fe、Co、Ti等对三元合金中A或B组元进行部分代替,以调整所形成的氢化物的稳定性,并使之具备合适的晶体结构类型及相组成含量分布。提出Zr系合金电极的成分设计方向及一般规律性。表面清洁、高比表面积和高缺陷密度是促使Zr系贮氢合金气态活化性能得到改善的根本原因。过渡族元素多元化替代可以明显地改善Zr系贮氢电极的活化性能,其中以La、Ti等大原子半径尺寸元素的作用较为突出。采用HF稀溶液处理及气态吸放氢循环致碎的制粉方式和高温下放电均有利于加快电极的活化速度,同时指出合金颗粒度对此性能影响甚微。Zr-Cr-Ni系电极具有优良的抗氧化腐蚀能力,从而具有好的循环寿命性能。同时推导出贮氢电极在恒电流阳极极化作用下的阳极过电位表达式。在开口式电解池中,贮氢电极的容量保持率CR值,除了与环境  相似文献   

9.
为了改善AB2型Laves相贮氢合金的电化学性能,对AB2型Ti基及Ti-Zr基贮氢合金进行快淬处理。用XRD和SEM分析了铸态及快淬态合金的相结构,并观察了合金的微观组织形貌。研究了快淬工艺参数对AB2型Laves相贮氢合金的电化学性能及微观结构的影响。研究的结果表明快淬对AB2型Laves相贮氢合金电化学性能的影响与合金的成分密切相关。对Ti基合金,随淬速的增加,合金的容量显著提高,在一定淬速下出现极大值。快淬对合金的活化性能基本没有影响,合金的循环稳定性有所改善但不显著;对Ti-Zr基合金,随淬速增加,合金的循环稳定性得到大幅度提高,而合金的容量及活化性能明显降低。快淬使AB2型贮氢合金电化学性能发生变化的根本原因是合金的微观结构发生了变化。  相似文献   

10.
贮氢合金Zr(Mnl-xNix)2(0.40≤x≤0.75)的多相Rietveld分析表明,它是以C15型Laves相ZrM2为主的多相体系、不同M/Zr原子比(M=Nix或Mnl-x)非Laves相合金的出现与丰度和整个合金成分配比中Ni/Zr原子比的变化一致,并与Ni-Zr相图中具有同样Ni/Zr原子比的金属间化合物有相同的晶型.x=0.75,Zr7M10的丰度是38.57%;x=0.55,C15Laves相的最大丰度达85.98%,电化学放电容量也达最大值242mAh/g;≥0.55,C14型Laves相丰度在2%左右;x<0.55;C14型Laves相丰度随Mn取代量的增加而增加;x=0.40,丰度是26.38%.取代量x的增减引起每个原子的平均价电子数的变化可以解释C15Laves相出现同丰度的变化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号