共查询到20条相似文献,搜索用时 63 毫秒
1.
针对风电场日前风电出力预测问题,应用一种基于经验模态分解法优化支持向量机的算法的短期风电功率组合预测方法.首先采用经验模态分解法将历史风电功率数据分解为一系列相对平稳的分量序列,以减少不同特征信息间的相互影响,然后采用优化的支持向量机法对所分解的各分量序列分别建立预测模型,针对各分量自身特点选用不同的核函数和参数以取得... 相似文献
2.
基于经验模态分解和支持向量机的短期风电功率组合预测模型 总被引:22,自引:0,他引:22
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。 相似文献
3.
4.
为了提高风电场输出功率的预测精度,应用小波分析(WD)和布谷鸟优化支持向量机(CS-SVM)算法对风电功率进行超短期预测,对比于通过预测风速间接求得的风电功率更加直接且准确。首先,利用WD与重构,将风电功率模型分解成近似序列和细节序列,然后利用CS-SVM算法对每个序列进行预测,得到每个序列的预测结果,最后把各个序列的预测结果叠加,形成风电功率的最终预测值。算例计算结果表明,预测结果具有较高的精度,与SVM以及其他方法优化的SVM预测结果相比,文中使用的方法预测结果更加准确,具有较强的优越性和实用性。 相似文献
5.
风能的波动性和随机性给风电功率预测带来了很大的影响,准确合理的预测可以使系统可靠、持续、稳定运行。提出一种基于相关向量机的超短期风电功率预测方法。相关向量机是在贝叶斯理论的基础上提出的一种概率学习模型,与支持向量机相比,相关向量机具有概率模型稀疏、核函数计算量小等优点。对滚动多步预测模型进行了分析,建立了相关向量机的风电功率预测模型。利用该方法对吉林西部若干风电场进行功率预测,结果表明,所提出的预测模型能有效地提高预测精度,对工程有较高的应用价值。 相似文献
6.
精确的短期风电功率预测建模对于提升新能源电力系统经济稳定运行十分重要。针对传统预测方法在小样本学习、精细化建模、概率性预测等方面的不足和易陷入局部最优的影响,首先以相关向量机(RVM)理论为核心,建立了基于RVM的风电功率预测模型。然后,针对万有引力搜索算法(GSA)缺少跳出局部最优机制和群体记忆功能,提出了一种结合自适应粒子群算法(APSO)的APSO-GSA混合优化算法,利用该算法对RVM模型参数进行优化。最后,以中国西北某风电场运行数据为例进行验证。结果表明,所提方法具有更高的建模精度和更快的收敛速度,实现了利用少量样本和简单模型对未来时刻风电功率的精确预测。 相似文献
7.
基于云支持向量机模型的短期风电功率预测 总被引:1,自引:0,他引:1
将云模型和支持向量机(SVM)相结合,提出一种适合短期风电功率预测的云支持向量机模型.该模型采用云变换方法提取风速序列的定性特征,并通过SVM建立风速特征与风电功率间的关系.对未来24h的风电功率预测结果显示,该模型在某个点上的预测值是一个有稳定倾向的离散值集合.采用逆向云算法求取集合的期望值作为确定性预测结果,并与SVM和自回归求和移动平均(ARIMA)模型的预测结果相比较,结果表明云支持向量机具有更高的预测精度,预测效果显著,因此,该模型可有效应用于短期风电功率预测. 相似文献
8.
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型.该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode de?composition)将原始风电序列分解为一系列不同特征尺度的子序列;并... 相似文献
9.
10.
对风电功率进行较为准确的预测是合理调整含有风电的电力系统或微电网系统的调度策略,提高其运行稳定性与经济性的有效手段。在分析传统风电功率预测过程的基础上,从基本预测方法在功率预测过程中的使用策略角度出发,提出了不依赖于基本预测方法的新的改进预测思路。在这种改进方法中,增加了误差预测模型,对传统方法的预测值所包含的误差值进行预测,并将通过误差预测模型得到的预测误差与传统方法的预测值叠加作为改进方法的最终预测结果,并以反向传播(BP)神经网络作为基本预测方法对实际风电场进行实例验证分析。计算结果表明:提出的改进风电功率预测方法能够较大幅度地提高预测精度;提出的改进思路和传统改进思路不同,并不涉及基本预测方法内部特性且无需引入其他辅助方法,因而具有良好的通用性。 相似文献
11.
基于最小二乘支持向量机的风速预测模型 总被引:7,自引:2,他引:7
风速具有较大的随机性,预测的准确度不高。针对这种现象,基于最小二乘支持向量机(least squares support vector machine,LS-SVM)理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55%,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。 相似文献
12.
13.
基于相似数据的支持向量机短期风速预测仿真研究 总被引:6,自引:0,他引:6
风电场功率预报是减小大规模风电并网对电网造成不良影响的有效手段,提高短期风速预测的精度是保障风电场功率预报的重要基础。提出了基于相似数据并结合小波分析的支持向量机短期风速预测方法。该方法从大量的数据样本中提取相似数据创建训练样本,采用小波分解技术将风速信号分解成低频趋势信号和高频随机信号,分别采用支持向量机理论建模,合成得到风速预测数据。仿真结果表明,相似数据有效地提高了数据的相关度,小波分解使支持向量机模型更好地拟合风速信号的低频和高频特性,提高了预测精度。通过与某风电场的实际风速数据验证,表明模型具有较强的泛化能力,程序运行时间可满足工程需要。 相似文献
14.
基于时间序列与支持向量机的风电场风速预测研究 总被引:5,自引:0,他引:5
介绍时间序列法与支持向量机用于风速预测的理论基础,通过Matlab软件,利用风电场采集得到的风速数据,建立时间序列法与支持向量机模型,对这2种方法在风电场风速预测中的应用进行了研究和比较。仿真结果表明,这两种方法都有效,但支持向量机风速预测精度更高,预测结果更好,具有一定的实用价值。 相似文献
15.
随着大规模光伏电站接入配网,为了减轻光伏出力的随机性对电网安全稳定运行的影响,有必要加强光伏出力预测研究。提出了一种基于最小二乘支持向量机(LSSVM)的光伏出力超短期预测模型,模型的输入考虑了待预测时段的最新气象信息,提前1h对每刻钟的光伏出力进行预测。为了能更精确地反映待预测日的天气情况,对影响光伏出力的每一气象因素,分别赋予一适当权值,通过计算加权欧氏距离确定各时段的训练样本。最后,利用含有突变情况的天气对训练好的模型进行了测试和评估。结果表明,所提模型预测精度较高,能够为电网调度部门制定合理调度计划提供一定的参考依据。 相似文献
16.
运用多种预测方法对中长期电力负荷预测所得结果会相差甚远,而综合各方法的组合预测能够避免其偏颇。由于在小样本和非线性拟合能力方面的优势,支持向量机方法被用于组合预测:多种传统方法预测值作为输入,拟合输入与输出之间的非线性关系,求得预测结果。针对SVM在处理回归问题时算法编程及参数寻优较为复杂的问题,提出了一种基于SVM图形用户界面(Graphical User Interface,GUI)工具箱的组合预测方法。算例分析表明,运用该方法,在预测过程中可直观、方便地应用通用软件工具包,且预测精度较高,便于推广和工程应用。 相似文献
17.
基于小波分解和最小二乘支持向量机的短期风速预测 总被引:9,自引:0,他引:9
短期风速预测对并网风力发电系统的运行有重要意义。对风速进行较准确地预测,可以有效减轻或避免风电场对电力系统的不利影响,同时提高风电场在电力市场中的竞争能力。简述了短期风速预测的价值和方法,提出了基于小波分解(wavelet decomposition,WD)和最小二乘支持向量机(least square support vector machine,LS-SVM)的短期风速预测方法,分别以香港和河西走廊地区风电场为例,建立了上述2个地区风速预测的WD-LSSVM模型,根据上述地区的数据进行实例验证,结果表明文中的方法显著提高了超前一步预测的精度。 相似文献
18.
综合最优灰色支持向量机模型在季节型电力负荷预测中的应用 总被引:1,自引:0,他引:1
季节型电力负荷同时具有增长性和波动性的二重趋势,使得负荷的变化呈现出复杂的非线性组合特征。对此,提出了一种综合最优灰色支持向量机预测模型,研究了同时考虑2种非线性趋势的复杂季节型负荷预测问题,说明了此优化模型分别优于2种单一负荷预测模型。在此基础上,对一般粒子群算法引入粒子速度自适应可调机制,并利用改进粒子群算法优化组合预测模型中的权值。对电力负荷预测应用实例的计算结果表明,该模型较大提高了季节型负荷预测的精度,具有较好的性能。 相似文献
19.
20.
针对支持向量机(support vector machine,SVM)负荷预测方法中存在冗余信息、数据量过大而导致的训练时间过长、速度变慢等缺陷,利用模糊粗糙集(Fuzzy Rough Sets,FRS)能有效地处理不精确或不完备知识及冗余信息的特点,提出了一种结合FRS和SVM的短期负荷预测模型,将FRS理论中的属性约简算法用于解决电力负荷中众多影响因素的信息膨胀问题,采用属性约简算法剔除与决策信息不相关的因素,将约简后的因素作为SVM的输入,并采用SVM回归算法预测短期负荷。算例仿真表明,该预测模型可保证预测精度,加快计算速度。 相似文献